造成地の GCP 不使用型 UAV 写真測量の SfM 段階における 撮影方法・解析設定の影響

1. はじめに

従来の UAV 写真測量では,SfM(撮影位置・向き や奥行き方向スケール f の推定)段階における精度 確保のために,GCP(標定点;地上に設置して精密に 測量し,カメラパラメータ推定の補助や点群のジオ リファレンスに用いる点)が必要である.GCPの設 置には労力がかかるほか,設置が難しい現場もある.

一方,2018年に発売された DJI Phantom 4 RTK(以下「P4RTK」とする)は、各画像の撮影位置の RTK-GNSS 測位が可能である.このような UAV を用いることで、GCP 不使用型の UAV 写真測量においても、精度を確保できる可能性があり、それを実証するための多数の実験が行われている.

ただし既往の実験において,SfM の精度が撮影方 法のみならず解析設定にも強く依存し,かつ適切な 解析設定が撮影方法に依存するような事例が見つか っている.適切な解析設定を事前に予測することは 難しいため,安定した精度でGCP 不使用型 UAV 写 真測量を行うには,被写体の種類(例:造成地)別に, 撮影方法や解析設定の精度への影響に関する知見を 蓄積することで,多くの解析設定で高精度を与える ロバストな撮影方法を確立する必要がある.

そこで、本研究では、2か所の造成地(千葉県野田市:対象領域I,茨城県つくばみらい市:対象領域II) において、GCP不使用型UAV写真測量を行い、撮影 方法や解析設定のSfMの精度への影響やロバストな 撮影方法の存在について検討した。

2. 対象領域 I:千葉県野田市の造成地

2.1 実験·解析方法

2.1.1 対象領域とUAV 空撮

図 1 に,対象領域 I の概観と検証点(14 点)の 配置,鉛直下向き撮影の撮影位置を示す.撮影には P4RTK(画像サイズ:5472×3648 画素,画角:84°)

山口大学 〇高田雅也・水津佑輔 株式会社フジタ 松岡祐二・野末晃 山口大学 神野有生

を用い,対地高度約73m,約55m(地上画素寸法: 2 cm,1.5 cm)の鉛直下向き撮影に加えて,対地高度 約73mで天底角30°の斜め撮影を行った.図2に 斜め撮影の撮影位置を示す.鉛直下向き撮影のオー バーラップ率は,進行方向80%,隣接コース間60% に設定した.

図 1 検証点の配置と鉛直下向き撮影の撮影位置 (対象領域 I)

図 2 天底角 30°の斜め撮影の撮影位置と向き (対象領域 I)

2.1.2 画像セット

撮影した画像から表 1 に示す画像セット(部分集合) を定義し,SfM 解析に用いた.なお,表 1 中の「73 m 下 122」は対地高度約 73 m の鉛直下向き撮影 122 枚, 「55 m 下 1」は対地高度約 55 m の鉛直下向き撮影 1 枚, 「73 m 斜 26」・「73 m 斜 6」・「73 m 斜 3」・「73 m 斜 1」 はそれぞれ撮影高度約 73 m の斜め撮影(天底角 30°) 26 枚,6 枚,3 枚,1 枚を用いたことを示す.また,画 像セット③ – ⑥の斜め撮影画像は,②に用いた全 26 枚 のうち,植生や対象領域外が写っている画像を段階的に 削除して選んだものである.

2.1.3 解析設定

表2に、検討した解析設定を示す.ここで、「入力画

表 1 画像セットと画像枚数(対象領域 I)

セット 名	画像セット	合計 枚数
1	73m下122+55m下1	123
2	73m下122+73m斜26	148
3	73m下122+73m斜6	128
4	73m下122+73m斜3	125
5	73m下122+73m斜1	123
6	73m下122+55m下1+73m斜1	124
$\overline{\mathcal{I}}$	73m下122	122

像の縮小率」は、SfM 解析ソフトウェアに入力する画像 の縦横を何倍に縮小(拡大)するか設定する項目である. また、「画像あたり上限特徴点数」は、各画像について 検出される特徴点の数の上限を設定する項目である. 解 析設定の組み合わせは、表 2の系統A-Cに示すよう に、3つの目的別に3系統用意した.

2.1.4 解析手順

SfM 解析には Agisoft 社 Metashape Professional Ver.1.5.2–1.5.5を用いた.まず,後の三角測量の準備と して,鉛直下向きの各画像について,検証点の位置を目 視判読した.続いて,表1の画像セットそれぞれにつ いて,表2に示した解析設定の組み合わせでSfM 解析 を行い,三角測量によって検証点の座標を推定し,検証 点誤差(検証点の推定位置と実測位置の距離)のRMS を評価した.SfM 解析は,解析設定の各組に対して2回 ずつ行い,計4776ケースとなった.その後,検証点誤 差 RMS が4cm (撮影位置と検証点の測位誤差によって 生じ得る誤差レベル)以下であることを高精度とみなし て,検証点誤差 RMS が4 cm 以下となるようなケース の割合を観察した.

衣 ζ 快討しに胜忉 設定 \刈豕限以

系統A		系統B	系統C		
	画像あたり上限特徴点数に関する解析	画像あたり上限タイポイント数に関する解析	内部パラメータの種類・重みづけに関する解析		
画像セット	123456	123456	1234567		
入力画像の縮小率	1/4倍, 1/2倍, 1倍	1/4倍, 1/2倍	1/4倍		
画像あたり 上限特徴点数	0, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000, 85000, 90000, 95000, 100000, 250000, 500000	0, 3000	2000, 10000		
画像あたり 上限タイポイント数	0	0, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000, 15000, 20000, 25000, 30000, 35000, 40000, 45000, 50000, 55000, 60000, 65000, 70000, 75000, 80000, 85000, 90000, 95000, 100000	0		
撮影位置座標の重み	P4RTKが各画像に埋め込んだ RTK-GNSS測位の誤差の標準偏差	P4RTKが各画像に埋め込んだ RTK-GNSS測位の誤差の標準偏差	P4RTKが各画像に埋め込んだ RTK-GNSS測位の誤差の標準偏差を 初期値とし, x, y, z成分すべてについて 1/2倍, 1倍, 2倍		
タイポイントの重み	1 pixを初期値とし、1倍	1 pixを初期値とし、1倍	1 pixを初期値とし、1/2倍、1倍、2倍		
推定する 内部パラメータの種類	f, cx, cy, k1, k2, k3, p1, p2	f, cx, cy, k1, k2, k3, p1, p2	f, cx, cy, k1, k2, k3, p1, p2 f, cx, cy, k1, k2, k3, p1, p2, p3 f, cx, cy, k1, k2, k3, p1, p2, p3, p4 f, cx, cy, k1, k2, k3, k4, p1, p2, p3 f, cx, cy, k1, k2, k3, k4, p1, p2, p3, p4		

2.2 解析結果

表3に解析系統別の全ケースの中で検証点誤差RMS が4 cm以下であったケースの数と割合を示す.3系統 の解析いずれにおいても,鉛直下向き撮影画像のみを用 いた画像セット①や⑦では,検証点誤差RMSが4 cm以 下となる割合は小さいが,斜め撮影画像を加えた画像セ ット② – ⑥では,検証点誤差RMSが4 cm以下となる 割合が大きい.原因を調べた結果,画像セット①や⑦で は,奥行きスケールfの誤推定により,誤差の高さ成分 が大きくなったことが明らかになった.

さらに表3において、画像セット② – ⑤に着目する と、3系統の解析いずれにおいても、斜め撮影画像の少 ない画像セット④や⑤の方が、斜め撮影画像を多く加え た画像セット②や③と比べて4 cm以下の高精度となる 割合が大きい.より詳細な検討の結果、画像セット②の みに含まれる斜め撮影画像(植生や対象領域外の領域を 多く含む)から生まれたタイポイントの数および質が、 画像セット⑤の斜め撮影画像と比べて劣っていること が示唆された.

表 4に解析系統 A における「入力画像の縮小率」と 「画像あたり上限特徴点数」の組み合わせ別の検証点誤 差 RMS [m]を示す. **表 4**から,これらが精度に大きな 影響を与え得ることが示唆された. 表 3 検証点誤差 RMS が 4 cm 以下であったケースの数と割合(対象領域 I; 解析系統・画像セット別)

			検証点誤差RMS					
解析 系統	かト 名	画像セット	合計 ケース 数	4 cm超の ケース数	4 cm以下の ケース数	4 cm以下の ケース数の 割合[%]		
	1	73m下122+55m下1	258	254	4	1.6		
	2	73m下122+73m斜26	258	197	61	23.6		
	3	73m下122+73m斜6	258	253	5	1.9		
	4	73m下122+73m斜3	258	69	189	73.3		
	5	73m下122+73m斜1	258	83	175	67.8		
	6	73m下122+55m下1+73m斜1	258	107	151	58.5		
в	1	73m下122+55m下1	328	322	6	1.8		
	2	73m下122+73m斜26	328	328	0	0.0		
	3	73m下122+73m斜6	328	306	22	6.7		
	4	73m下122+73m斜3	328	139	189	57.6		
	5	73m下122+73m斜1	328	157	171	52.1		
	6	73m下122+55m下1+73m斜1	328	159	169	51.5		
	1	73m下122+55m下1	180	180	0	0.0		
	2	73m下122+73m斜26	180	180	0	0.0		
с	3	73m下122+73m斜6	180	91	89	49.4		
	4	73m下122+73m斜3	180	35	145	80.6		
	5	73m下122+73m斜1	180	108	72	40.0		
	6	73m下122+55m下1+73m斜1	180	165	15	8.3		
	\bigcirc	73m下122	180	180	0	0.0		

3. 対象領域 II: 茨城県つくばみらい市の造成地

3.1 実験·解析方法

3.1.1 対象領域とUAV 空撮

図 3 に,対象領域 II における検証点(13 点)の配 置,鉛直下向きの撮影位置を示す.撮影には P4RTK を用い,対地高度約 73 m(地上画素寸法:2 cm)の 鉛直下向き撮影と複数方位(概ね南北向き)の斜め 撮影(天底角 5,10,30°)を行った.オーバーラップ 率は,進行方向 80%,隣接コース間 60%に設定した.

表 4 解析系統 A における「入力画像の縮小率」と「画像あたり上限特徴点数」の組み合わせ別の検証点誤 差 RMS [m] (対象領域 I; **斜体**は検証点誤差 RMS が 4 cm 以下であることを示す)

画像セット		1			2			3		
入	力画像の縮小率	1/4倍	1/2倍	1倍	1/4倍	1/2倍	1倍	1/4倍	1/2倍	1倍
画	100	3.937	0.538	0.861	4.198	0.089	0.844	4.198	0.137	0.844
し 他	500	0.049	0.055	0.102	0.032	0.056	0.045	0.041	0.040	0.053
ふあ	1000	0.041	0.063	0.113	0.067	0.055	0.049	0.063	0.052	0.053
0) t-	2000	0.079	0.065	0.082	0.063	0.050	0.042	0.036	0.051	0.047
11	3000	0.087	0.067	0.072	0.062	0.051	0.040	0.047	0.044	0.048
L F	4000	0.066	0.079	0.077	0.062	0.051	0.039	0.045	0.045	0.048
限	5000	0.063	0.072	0.079	0.061	0.050	0.040	0.048	0.045	0.047
貼	6000	0.069	0.068	0.087	0.060	0.050	0.040	0.049	0.041	0.046
微	10000	0.069	0.070	0.089	0.061	0.050	0.041	0.050	0.047	0.043
山山	50000	0.068	0.079	0.118	0.060	0.050	0.040	0.048	0.048	0.043
洲粉	100000	0.068	0.080	0.676	0.060	0.050	0.040	0.048	0.049	0.041
32	なし	0.068	0.081	0.864	0.063	0.050	0.040	0.050	0.049	0.041
画像セット		4			5			6		
入	力画像の縮小率	1/4倍	1/2倍	1倍	1/4倍	1/2倍	1倍	1/4倍	1/2倍	1倍
画	100	4.198	0.253	0.844	4.198	0.378	0.844	3.832	0.533	0.845
像	500	0.042	0.026	0.049	0.198	0.051	0.032	0.075	0.047	0.054
あ	1000	0.044	0.040	0.043	0.038	0.033	0.031	0.038	0.035	0.031
<i>t</i> -	2000	0.042	0.036	0.041	0.044	0.041	0.028	0.049	0.046	0.027
IJ	3000	0.044	0.032	0.039	0.062	0.031	0.027	0.063	0.035	0.030
Ιŕ	4000	0.035	0.033	0.039	0.048	0.038	0.028	0.052	0.046	0.028
限	5000	0.032	0.034	0.039	0.048	0.042	0.028	0.051	0.042	0.033
貼	6000	0.035	0.033	0.036	0.041	0.038	0.028	0.047	0.037	0.027
徴	10000	0.032	0.037	0.037	0.046	0.029	0.027	0.046	0.032	0.028
占	50000	0.031	0.041	0.041	0.050	0.026	0.030	0.046	0.028	0.028
数	100000	0.031	0.042	0.038	0.050	0.026	0.029	0.046	0.028	0.027
~~	なし	0.033	0.041	0.038	0.041	0.026	0.029	0.044	0.028	0.033

図 3 検証点の配置と鉛直下向き撮影の撮影位置 (対象領域 II)

3.1.2 SfM 解析

表 5 に、検討した解析設定を示す.SfM 解析には Metashape Professional Ver.1.5.5 を用いた.まず、後の三 角測量の準備として、鉛直下向きの各画像について、自 動検出機能および目視によって検証点の位置を判読し た.続いて、表 6 の⑧ – ⑪の画像セットそれぞれにつ いて、表 5 に示した解析設定の組み合わせで SfM 解析 を行い、三角測量によって検証点の座標を推定し、検証 点誤差の RMS を評価した.SfM 解析は、解析設定の各 組に対して1回ずつ行い、計 2304 ケースとなった.そ の後、検証点誤差 RMS が 4 cm 以下であることを高精 度とみなして、検証点誤差 RMS が 4 cm 以下となるよ うなケースの割合を観察した.

3.2 解析結果

表 6 に、画像セットごとの検証点誤差と奥行きス ケール f の統計量を示す.表 6 から、天底角が大き くなるにつれて、検証点誤差 RMS は減少しているこ

表 5 検討した解析設定(対象領域 II)

画像セット	89111			
入力画像の縮小率	1/4倍, 1/2倍, 1倍, 2倍			
画像あたり上限特徴点数	1000, 5000, 10000, 50000			
画像あたり上限タイポイント数	0			
撮影位置座標の重み	P4RTKが各画像に埋め込んだ RTK-GNSS測位の誤差の標準偏差を 初期値とし、x, y, z成分すべてについて 1/2倍, 1倍, 2倍			
タイポイントの重み	1 pixを初期値とし、1/2倍、1倍、2倍			
推定する 内部パラメータの種類	f, cx, cy, k1, k2, k3, p1, p2 f, cx, cy, k1, k2, k3, p1, p2, p3 f, cx, cy, k1, k2, k3, p1, p2, p3, p4 f, cx, cy, k1, k2, k3, k4, p1, p2, p3, p4			

とがわかる.これは、同じく**表 6**に示されている通 り、奥行きスケール f の推定が安定(標準偏差が減 少)したことにより、検証点誤差の大半を占める Z 成分が減少したためであると考えられる.結果的に、 検証点誤差 RMS が 4 cm 以内となったケースの割合 は、天底角の増加とともに飛躍的に増加した.

4. 結論

本研究から,以下のことが結論付けられる.

- 撮影方法・解析設定によっては、標定点を用いなくても高い精度の写真測量が可能である。
- 解析設定である「縮小した画像を SfM 解析に用いる」、「画像から抽出する特徴点の数を制限する」、「撮影位置座標やタイポイントの重み」が測量精度に大きな影響を与える。
- ・鉛直下向きに撮影した画像のみを用いた場合では、 解析設定を工夫しても高い精度は得られにくい。
- ・植生や対象領域外が多く写った斜め撮影画像を加 えてしまうと、タイポイントの質・量に悪影響を与 えることもある。
- 対象領域 II の実験結果に基づけば、全体を複数方位・天底角 30°の斜め撮影とする方法が、解析設定の誤りによるリスクが少なく高精度であった.
 今後、より多くの角度での事例の蓄積が望まれる.

表 6 画像セット別の検証点誤差統計量と、推定された奥行きスケールfの標準偏差(対象領域 II)

-tou L		h_7	検証点誤差 [m]		検証点誤差RMSが		fの
201 2	画像セット	·) — ∧ */	RMS	Z成分	4 cm以内のケース		標準偏差
		χχ		RMS	ケース数	割合	[画素]
8	鉛直下向き撮影	576	0.127	0.127	105	18.2	4.893
9	天底角5°斜め撮影	576	0.184	0.182	28	4.86	4.496
10	天底角10°斜め撮影	576	0.052	0.049	263	46.7	1.850
(1)	天底角30°斜め撮影	576	0.041	0.033	423	73.4	0.982