斜め往復 UAV 撮影に基づく標定点レス SfM における撮影方法・解析設定の影響

1. はじめに

現在のUAV 写真測量では一般に、MVS に必要な カメラの外部・内部パラメータのすべてを、SfM を 用いて推定する。この場合に標定点ゼロを実現する には、各画像の投影中心を RTK-GNSS 等で高精度に 測るだけでなく、内部パラメータの推定に配慮した 撮影が必要である。撮影方法の確立を目指して国内 外で多くの実験が行われ、例えば浦川ら (2019)は、 カメラを鉛直下向きから前に傾けた (pitch をつけた) 斜め往復撮影や、複数高度撮影の有効性を見出した。

ただし従来の実験では、特定の撮影方法(で得た 画像セット)の良否を、単一の解析設定(デフォルト 設定等)で実施したSfMの精度(検証点誤差統計量) により評価することが多い。SfMの精度は特徴点の 抽出等の諸過程に関する解析設定に依存し、最適な 設定は被写体を含む諸条件つまり画像セットに依存 するため、これでは適切に評価できない恐れがある。 一方、一般的な実用場面では最適な解析設定は不明 (検証点を使った解析設定の最適化は困難)だから、 最適な解析設定における精度を撮影方法の評価基準

とすることも実用に沿わない。

そこで高田ら (2020)は、<u>幅広い解析設定で高精度</u> <u>を与える撮影方法を探す実験</u>を行った。具体的には、 天底角 (pitch)が 0, 5, 10, 30°の斜め往復撮影で得た 各画像セットについて、主要な設定項目を広く変化 させた 500 超の解析設定で SfM を実施し、高精度を 与えた解析設定の割合や全解析設定に関する検証点 誤差の統計量を評価した。結果として、天底角 30° の画像セットが優れていたと報告している。標定点 レス SfM を可能とする撮影方法の確立のためには、 このような実験例の蓄積も有効と考えられる。

本発表では高田ら (2020)を踏襲し、天底角や解析 設定の数をさらに拡充して、新たに2サイトで実施 した実験について報告する。

山口大学〇神野有生

株式会社フジタ 松岡祐仁

山口大学、大津勇貴・杉本一生・高田雅也

2. 実験方法

2 サイトA (君津 DDFF), B (造成地) で、図 1に 例示する斜め往復撮影を、表 1 に示す撮影条件の組 み合わせ (各サイト 10 通り=10 画像セット) で実施 した。B の詳細は松岡ら(2020)を参照。検証点の楕円 体高の標準偏差は A: 0.95 m, B: 0.34 m であり、主な 被覆は A: 短草、B: 裸地であった。撮影時の風速は 両サイトとも 0 – 2.2 m/s であった。撮影には DJI Phantom 4 RTK を、フォーカス無限遠・歪み補正な し・基地局ありで用いた。検証点はエアロセンス AEROBO marker とし、スタティック測位を行った。

各画像セットについて、Agisoft Metashape 1.5.5 を 用いて表 2に示す計2250通りの設定でSfMを行い、 検証点誤差 RMS (SfM 後の三角測量による推定位置 とスタティック測位で得た位置との距離の、全ての 検証点に関する RMS)等の、多試行に関する統計量 を評価した。ここで、画像に埋め込まれた投影中心 の測位結果をバンドル調整に、製造時のカメラ校正 結果を内部パラメータの初期値に利用した。カメラ モデルについては、放射・接線方向の高次の歪みや 画素の歪みに関するパラメータの有無により、表 3 の 5 通りを扱った。各試行ではカメラモデルとその パラメータ(内部パラメータ)を全画像で共有した。

図 1. サイトAにおける天底角 20°の撮影

表 1. 撮影条件(計 10 通り)

項目	サイトA	サイトB
天底角 [°]	0-45 (5刻み)	0-40 (10刻み)
対地高度 [m]	55 (GSD 0.015)	73 (GSD 0.020)
重複率 [%]	80×60	80×60, 80×75

表 2. SfM の解析設定(計 2250 通り)

設行	宦項目(<i>Metashape での呼称</i>)	設定値
特	i. 入力画像のサイズ	縦横 1/4,
徴	(アラインメント精度)	縦横 1/2, 原寸
点	ii. 画像あたり上限特徴点数	1k (= 1000),3k,
	(キーポイント制限)	9k, 27k, 50k, ∞
バ	iii. 投影中心測位精度(カメラ	0.25, 0.5, 1, 2, 4
ン	<i>精度 [m]</i>)に乗じる倍率	
ド	iv. タイポイント投影位置精	0.25, 0.5, 1, 2, 4
ル	度(タイポイント精度 [pix])	
調	に乗じる倍率	
整	v. カメラモデル(<i>考慮する内</i>	5通り
	部パラメータの組)	

表 3. パラメータの有無によるカメラモデルの定義

番号	cx, cy, k1 - k3, p1, p2	k4	p3, p4	b1, b2	
1		有	有	有	
2	+	有	有	無	
3	cx, cy, k1 - k3, p1, p2k4p3, p4b1, b2有有有有有有有有無有年無第午無無有無	無			
4		無			
5		無	無	無	

3. サイトAに関する結果と考察

図 2 に、カメラモデルが②の試行群(画像セット = 天底角ごとに各 450 試行)について、検証点誤差 RMS の統計量を例示する。次のことが観察できる。 (ア)天底角 10°以下では 15°以上に比べ、四分位幅 (75%値と 25%値の差)が、すなわち解析設定

による精度のばらつきが顕著に大きい。

- (イ) 天底角 20-35°では、四分位幅と最大値がとも
 に小さく、解析設定によらず比較的高い精度が
 得られている。
- (ウ) 天底角 35°以上では、最小・最大値と四分位数 全てが単調増加した(描画範囲外のものを含め)。

図 2. カメラモデル②を用いた天底角別各 450 試行 に関する検証点誤差 RMS の統計量 (A)。一部は値 が大きく、描画範囲外にある。

表 4. 天底角別の各 2250 試行に関する集計(A)

天底角 [°]	fの 四分位幅 [pix]	k1の 四分位幅 [×1000]	検 の 中央値	点誤差F 統計量 [四分 位幅	RMS m] 最大値	鉛直平均 誤差率の 中央値 [%]	姿勢推定 失敗率 [%]
0	16.78	4.36	<mark>0</mark> .125	0.217	2.808	95.0	0.097
5	43.38	5.24	0.439	0.293	1.3 <mark>78</mark>	99.5	0.000
10	10.10	4.25	0.188	0.136	<mark>0.</mark> 989	97.4	0.000
15	5.62	4.14	0.093	<mark>0</mark> .067	0.451	88.2	0.000
20	2.86	4.05	0.071	0.034	0.269	77.8	0.013
25	1.88	3.81	0.085	0.027	0.365	87.3	0.036
30	1.49	3.83	0.074	0.025	0.204	86.6	0.065
35	1.58	4.16	0.063	0.019	0.257	81.7	0.280
40	1.28	4.23	0.066	0.013	2.168	80.4	0.335
45	1.45	4.99	0.073	0.020	> 10 ¹²	81.9	2.265

表 4 には、全カメラモデルの試行に関する統計量 を示すが、同様の傾向が確認される。鉛直平均誤差 率が大きいため、**鉛直方向のバイアスが誤差の主要 な成分**である。ここに鉛直平均誤差率とは、検証点 鉛直誤差平均(鉛直座標の推定値とスタティック測 位値との差の、全検証点に関する平均)の絶対値と 検証点誤差 RMS の比である。加えて、天底角 35° 以下の全 18000 試行について、検証点鉛直誤差平均 とfの推定値は強い直線関係(R²=0.9961, 残差 RMS =0.016m) にあったことから、天底角 35°以下では **<u>f</u>が誤差の支配要因**と言える。さらに、天底角 5° から 30° にかけて f の四分位幅が単調減少している ことから、上記(ア)(イ)の主な原因は、天底角の 増加に伴うfの推定の安定である。これは、高田ら (2020)、松岡ら (2020)の報告や、fがカメラの向きの 一様な画像群では不定となる事実とも整合する。

集計	天	異コーズ	兩像	幾何学的林	食証を诵過
した	底	とのマッ	チンク゛が	したマッチング	の割合[%]
画像	角	上める	副合 [%]		
	гол	幾何字的	幾何字的	同コース画像	実コース画像
の祖		異コ- とのマ らめる 幾何学的 検証前 28.7 10.5 7.4 24.2 7.1 3.6	検証後	とのマッチング	とのマッチンク゛
	20	28.7	29.2	86.7	88.9
例1	40	<mark>1</mark> 0.5	7.1	88.1	57.4
	45	7.4	4.8	85.5	53.8
	20	24.2	21.0	91.5	75.9
例2	40	7.1	5.9	91.8	75.9
集計 した 値 の組 [° 例1 4 例2 2 例1 4 4 0 2 0 1 4 4 0 2 0 1 4 4 0 2 0 1 4 4 0 2 0 1 4 4 0 2 0 1 4 4 0 2 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	45	3.6	2.8	89.7	70.0

表 5. 同/異コース間のマッチング状況の比較 (A)

表 4 で、上記(ウ)との関連が推測されることと して、姿勢推定失敗率(アラインされなかった画像 の割合)と放射方向歪みのパラメータ k1 の四分位幅 が、天底角25°以上では単調増加した。また全画像 セットの計 22500 試行中、検証点誤差 RMS の上位 15 試行 (> 3 m)は、全て天底角 45°の画像セットの ものであり、その過半数では1コースの全画像(他 の試行では一部の画像)に、姿勢推定の失敗または、 推定されたカメラの向きの明らかな異常が見られた。 向きの異常な画像を数枚精査したところ、異コース 画像との有効な(幾何学的検証を通過し姿勢推定に 使われた)マッチングが皆無であった。そこで表 5 に示すように、天底角 20,40,45°の画像セットから 写った領域の似た画像を2組選び、解析設定が同じ 試行間で比較したところ、天底角の増加に伴って、 異コース画像とのマッチングの割合が幾何学的検証 前(局所特徴による対応付け)の段階で減り、さらに 幾何学的検証の通過割合が減ることもあいまって、 幾何学的検証後(有効なマッチング)ではより顕著 に減っていた。異コース画像との有効なマッチング のない画像群は、向きが一様な単コース撮影で得た **画像群同然である**ことから、fやkl等に加え rollの 推定も困難となる。以上より、(ウ)の機構として、 <u>天底角の増加に伴う隣接コース画像間のマッチング</u> の減少によるカメラパラメータ推定の困難化が想定 される。隣接コースの画像間では、カメラの向きに 天底角の倍の差がつき、被写体が平面の場合ですら 局所特徴に相応の差異が生じることに注意を要する。

4. サイトBに関する結果と考察

表 6に、サイトBについて表 4同様の表を示す。 ただし、姿勢推定の失敗が多く1検証点も三角測量 できなかった1試行(天底角40°)を集計から除外 している。両サイドラップとも、天底角10-20°で はA同様に、天底角増加に伴うfの安定化とそれに よる鉛直誤差の低減が認められる。ただし、Aでは 天底角30°でfの四分位幅が極小となったところ、 Bのサイドラップ60%では天底角20°で極小となり、 その極小値や鉛直平均誤差率はAのいずれの天底角 の場合よりも小さい。AB間でタイポイントの統計量 (画像あたりタイポイント数、タイポイントあたり マッチング数、再投影誤差 RMS等)に顕著な差異は

なく、コースの数・長さ等の影響が考えられる。

また両サイドラップとも、天底角が 30°から 40° に増えるとき、A(表 4)と同様に姿勢推定失敗率、 k1の四分位幅、検証点誤差 RMSの最大値が増えて いる。一部の試行・画像の精査により、天底角増加に 伴う異コース画像とのマッチングの減少やカメラの 向きの異常が認められたことから、前章で議論した Aと同様の機構が想定される。なお、表 4・表 6で 見られる極めて大きな検証点誤差 RMSの最大値は、 推定された向きが異常な画像に起因する。それらの 画像への検証点の投影は再投影誤差が大きいため、 SfM後に検証点を検出する実用場面では対処が可能 であるが、本研究では試行間の平等のため、事前に 検出した検証点の投影を全試行で共有し、各試行で は再投影誤差等で選別せず三角測量に用いている。

表 7 にはカメラモデル別に、検証点誤差 RMS が 0.04 m 以下(投影中心と検証点の GNSS 測位の誤差

表 6. 画像セット別各 2250 試行に関する集計(B)

#71°	天	fæ	μ1 Φ	検証	点誤差F	RMS	鉛直平均	次熱世空	
91r	底			の	統計量 [m]	誤差率の	安労推進	
7%/ [0/]	角	四分位幅	四分12幅	由山庙	四分	是十位	中央値	失敗率 [%]	
[70]	[°]	[bix]	[~ 1000]	山大中	位幅	山八瓜	[%]	[70]	
	0	25.92	5.51	0.300	0.361	$> 10^{1}$	99.7	0.000	
	10	2.49	4.16	<mark>0</mark> .062	0.043	0.979	89.0	0.000	
60	20	1.21	4.01	0.035	0.007	0.127	<mark>3</mark> 1.0	0.000	
	30	1.24	4.10	0.027	0.007	<mark>0</mark> .300	<mark>2</mark> 9.8	0.000	
	40	1.13	4.53	0.027	0.017	> 10 ¹²	<mark>3</mark> 6.2	3.195	
	0	42.72	6.94	0.328	0.542	> 10 ³	99.5	1 .219	
	10	2.18	4.09	<mark>0</mark> .060	0.034	<mark>0</mark> .256	87.7	0.037	
75	20	1.34	4.30	0.035	0.008	0.071	<mark>58.</mark> 3	0.083	
	30	1.16	4.18	0.032	0.004	$> 10^{1}$	<mark>41</mark> .5	0.855	
	40	1.39	4.58	0.042	0.007	> 10 ¹³	68.7	3.989	

表 7. 画像セット・カメラモデル別の各 450 試行に 関する、検証点誤差 RMS が 0.04 m 以下の解析設定 の割合 [%] (B)

重複率	天底角		カン	メラモラ	デル	
[%]	[°]	1	2	3	4	5
重複率天底角カメラモデル[%][°]①②③④⑤ $[\%]$ ①①②③④⑤1018.427.819.17.3480×602076.786.981.179.3743066.296.995.895.6954092.469.665.370.96606.99.80.49.601035.616.20.47.1180×752078.075.372.771.1663099.199.698.499.8974082.228.217.619.317	5.1					
	4.4					
80×60	20	76.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	30	66.2	96.9	0.2 2.9 3.6 5.1 27.8 19.1 7.3 4.4 86.9 81.1 79.3 74.2 96.9 95.8 95.6 95.1 69.6 65.3 70.9 66.4 9.8 0.4 9.6 0.2 16.2 0.4 7.1 1.1 75.3 72.7 71.1 66.7		
	40	92.4	69.6	65.3	70.9	66.4
	0	6.9	9.8	0.4	9.6	0.2
	10	35.6	16.2	0.4	7.1	5 3.6 5.1 7.3 4.4 9.3 74.2 5.6 95.1 0.9 66.4 9.6 0.2 7.1 1.1 1.1 66.7 9.8 97.3 9.3 17.1
80×75	20	78.0	75.3	72.7	71.1	66.7
	30	99.1	99.6	98.4	99.8	97.3
里復率 [%] 80×60 80×75	40	82.2	28.2	17.6	19.3	17.1

により生じ得る見かけの誤差レベル)の「高精度」と なった解析設定の割合を示す。カメラモデル①でサ イドラップ 60%の試行群を除き、高精度を与えた解 析設定の割合は、天底角 30°が最も大きく(>95%)、 20, 40°がそれに続いた。両サイドラップについて、 天底角 30°は、幅広い解析設定で高精度を与えたと 言える。カメラモデル①・サイドラップ 60%の試行 群の中で高精度が得られなかったのは、入力画像の サイズが縦横 1/4 または画像あたり上限特徴点数が 1000の試行群に限られていた(表 8)。

5. まとめ

1 方向斜め往復 UAV 撮影と投影中心の RTK-GNSS 測位に基づく標定点を用いない SfM の精度を、20 の 画像セット×2250 組の解析設定で調べた。解析設定 によらず高精度を得やすい天底角は、画像セットに よるが 20 - 35°であり、天底角が過小だとfの推定 に、過大だと隣接コース画像とのマッチングに問題 が生じた。その他、文中の太字部分を参照されたい。

参考文献

- [1] 浦川貴季ほか、日本写真測量学会 2019 年度秋季 学術講演会, 2019.
- [2] 高田雅也ほか,日本写真測量学会令和2年度年次 学術講演会発表論文集,2020.
- [3] 松岡祐仁ほか, JCMA 令和2年度建設施工と建設 機械シンポジウム, 2020.

· ·					/	(刀画像	のリイス	()	1 / / /	下作反)						-	
$ \rightarrow $	_	縦横	各1/4(低)		_	縦横	各1/2(中)	_		原	〔寸(高))	-		
	<mark>0.</mark> 113	<mark>0.</mark> 121	<mark>0.</mark> 120	<mark>0</mark> .099	0.132	0.043	0.043	0.041	0.046	0.051	0.029	0.028	0.026	0.026	0.026		
	<mark>0.</mark> 122	<mark>0.</mark> 110	<mark>0</mark> .095	0.113	0.142	0.041	0.041	0.042	0.046	0.045	0.029	0.029	0.027	0.027	0.026	←	
1k	<mark>0.</mark> 107	0.117	0.113	0.116	0.128	0.044	0.042	0.037	0.043	0.040	0.029	0.029	0.028	0.028	0.026	黨	
	<mark>0.</mark> 115	<mark>0</mark> .106	<mark>0.</mark> 123	<mark>0.</mark> 123	<mark>0.</mark> 124	0.041	0.042	0.038	0.040	0.043	0.029	0.029	0.029	0.029	0.028	きして	
	<mark>0.</mark> 113	<mark>0.</mark> 110	<mark>0.</mark> 120	<mark>0.</mark> 116	0. <mark>124</mark>	0.041	0.040	0.037	0.039	0.043	0.029	0.029	0.029	0.029	0.029	97	
	0.035	0.036	0.040	0.050	0.041	0.025	0.025	0.025	0.025	0.025	0.024	0.024	0.025	0.024	0.024	0.0	
	0.036	0.042	0.044	0.037	0.048	0.025	0.025	0.024	0.025	0.024	0.025	0.024	0.024	0.024	0.024	4	
3k	0.042	0.039	0.039	0.033	0.034	0.025	0.025	0.025	0.025	0.024	0.025	0.025	0.024	0.024	0.024	цц	
	0.033	0.038	0.033	0.040	0.034	0.025	0.025	0.025	0.025	0.024	0.025	0.025	0.025	0.024	0.024	Â	
	0.032	0.033	0.034	0.033	0.032	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.025	0.025	0.024	9	
	0.053	0.080	0.125	0.195	0.284	0.025	0.025	0.025	0.024	0.023	0.025	0.024	0.025	0.028	0.034	武	
	<mark>0</mark> .087	0.061	0 .070	0.202	0.263	0.026	0.024	0.025	0.024	0.024	0.026	0.025	0.024	0.025	0.028	1 T	
9k	0. 129	0 .079	<mark>0.</mark> 124	<mark>0.</mark> 116	<mark>0.</mark> 110	0.025	0.025	0.025	0.024	0.024	0.027	0.026	0.025	0.024	0.025	麦	
	0.066	<mark>0.</mark> 122	0.056	0.070	0 .074	0.025	0.025	0.025	0.024	0.024	0.027	0.027	0.026	0.025	0.025	भ	
	<mark>0</mark> .092	0.061	0.148	<mark>0</mark> .090	0.110	0.025	0.025	0.025	0.024	0.024	0.028	0.027	0.027	0.027	0.025		
	0.067	0.088	0.111	0.187	0.265	0.026	0.026	0.025	0.026	0.028	0.028	0.027	0.028	0.031	0.034		
	0.058	<mark>0</mark> .087	0.1 <mark>66</mark>	<mark>0.1</mark> 46	0.262	0.026	0.026	0.025	0.025	0.027	0.029	0.027	0.027	0.028	0.031		
27k	0.070	0 .071	0 .079	0.091	0.124	0.026	0.025	0.026	0.025	0.025	0.031	0.030	0.027	0.027	0.028		
	0 .075	0 .071	0.070	0.066	0.150	0.026	0.026	0.025	0.025	0.025	0.032	0.031	0.029	0.028	0.027		
	0.057	0.057	0.059	0.065	0.065	0.026	0.026	0.026	0.026	0.025	0.033	0.032	0.032	0.030	0.027		
	0 .067	<mark>0.</mark> 112	0.133	0.246	0.280	0.025	0.025	0.025	0.026	0.028	0.027	0.027	0.026	0.027	0.028		
	0.057	0.053	0 .078	0.126	0.277	0.026	0.026	0.025	0.025	0.026	0.029	0.027	0.026	0.027	0.027		
50k	0.061	0.056	0 .080	0. <mark>122</mark>	0.1 <mark>53</mark>	0.026	0.025	0.025	0.025	0.025	0.031	0.028	0.027	0.026	0.027		
	0.059	0.061	0.125	0.059	0.136	0.026	0.026	0.025	0.025	0.025	0.032	0.031	0.028	0.027	0.027		
	0 .084	0.059	0.062	0.057	0.200	0.026	0.026	0.026	0.025	0.025	0.032	0.031	0.030	0.028	0.027		1 E
<i>,</i>	0.100	0.071	<mark>0.</mark> 111	<mark>0.</mark> 124	0.300	0.026	0.025	0.025	0.026	0.029	0.029	0.027	0.028	0.027	0.028	0.3	X
無	0.061	<mark>0.1</mark> 66	<mark>0.</mark> 114	0.1 <mark>6</mark> 4	0.258	0.025	0.025	0.025	0.025	0.026	0.031	0.029	0.027	0.027	0.027	0.5	ſ
制	0.091	0.088	0.107	0.069	0.243	0.026	0.025	0.025	0.025	0.025	0.033	0.030	0.028	0.027	0.027	1	7
限	0.111	0.065	0.061	0 .074	0.242	0.026	0.026	0.025	0.025	0.025	0.034	0.032	0.029	0.028	0.027	2	e
124	0.110	0.061	0.069	0.058	0.067	0.026	0.026	0.026	0.025	0.025	0.034	0.032	0.032	0.030	0.028	4	Ī

表 8. 重複率 80×60[%]・天底角 30°の画像セットに関するカメラモデル①の各試行の検証点誤差 RMS [m] (B)

投影中心測位精度に乗じる倍率