
Compressed exponential relaxation as superposition of dual structure in
pattern dynamics of nematic liquid crystals
T. Narumi, F. Nugroho, J. Yoshitani, Y. Hidaka, M. Suzuki et al. 
 
Citation: AIP Conf. Proc. 1518, 403 (2013); doi: 10.1063/1.4794604 
View online: http://dx.doi.org/10.1063/1.4794604 
View Table of Contents: http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1518&Issue=1 
Published by the American Institute of Physics. 
 
Additional information on AIP Conf. Proc.
Journal Homepage: http://proceedings.aip.org/ 
Journal Information: http://proceedings.aip.org/about/about_the_proceedings 
Top downloads: http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS 
Information for Authors: http://proceedings.aip.org/authors/information_for_authors 

Downloaded 26 Feb 2013 to 130.34.254.28. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions

http://proceedings.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=T. Narumi&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=F. Nugroho&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=J. Yoshitani&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=Y. Hidaka&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://scitation.aip.org/vsearch/servlet/VerityServlet?KEY=ALL&uSeDeFaUlTkEy=TrUe&possible1=M. Suzuki&possible1zone=author&maxdisp=25&smode=strresults&aqs=true&ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4794604?ver=pdfcov
http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1518&Issue=1&ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://proceedings.aip.org/?ver=pdfcov
http://proceedings.aip.org/about/about_the_proceedings?ver=pdfcov
http://proceedings.aip.org/dbt/most_downloaded.jsp?KEY=APCPCS&ver=pdfcov
http://proceedings.aip.org/authors/information_for_authors?ver=pdfcov


Compressed Exponential Relaxation
as Superposition of Dual Structure

in Pattern Dynamics of Nematic Liquid Crystals
T. Narumi∗, F. Nugroho†, J. Yoshitani∗, Y. Hidaka∗, M. Suzuki∗ and S. Kai∗

∗Department of Applied Quantum Physics and Nuclear Engineering, Kyushu Univ., Fukuoka 819-0395, Japan
†Physics Department, Gadjah Mada Univ., Yogyakarta 55281, Indonesia

Abstract. Soft-mode turbulence (SMT) is the spatiotemporal chaos observed in homeotropically aligned nematic liquid
crystals, where non-thermal fluctuations are induced by nonlinear coupling between the Nambu–Goldstone and convective
modes. The net and modal relaxations of the disorder pattern dynamics in SMT have been studied to construct the statistical
physics of nonlinear nonequilibrium systems. The net relaxation dynamics is well-described by a compressed exponential
function and the modal one satisfies a dual structure, dynamic crossover accompanied by a breaking of time-reversal
invariance. Because the net relaxation is described by a weighted mean of the modal ones with respect to the wave number,
the compressed-exponential behavior emerges as a superposition of the dual structure. Here, we present experimental results
of the power spectra to discuss the compressed-exponential behavior and the dual structure from a viewpoint of the harmonic
analysis. We also derive a relationship of the power spectra from the evolution equation of the modal autocorrelation function.
The formula will be helpful to study non-thermal fluctuations in experiments such as the scattering methods.

Keywords: electrohydrodynamic convection, soft-mode turbulence, relaxation dynamics, projection operator formalism, dual structure
PACS: 05.45.-a, 61.30.-v, 47.54.De, 05.40.-a

1. INTRODUCTION

Nonlinear phenomena are ubiquitous in nature and have
various aspects. An example is chaotic (synonymously,
turbulent) dynamics, in which few degrees of freedom
(d.f.) generate unpredictable behavior (e.g., Refs. [1, 2]).
In spatially extended systems where the number of d.f.
increases with expanding the system size, weak non-
linearity can lead to spatial and temporal disorder. The
phenomenon triggered by weak nonlinearity is called
spatiotemporal chaos. There are several theoretical de-
scriptions (Ref. [3] and references therein) such as the
Kuramoto–Sivashinsky (KS) equation [4], the coupled
map lattices [5], the Swift–Hohenbarg equation [6], the
Nikolaevskii equation [7], and the complex Ginzburg–
Landau equation [8]. Nevertheless, systematical under-
standing for the chaotic or turbulent disorder is still de-
veloping.

An experimentally obtained spatiotemporal chaos in
homeotropically aligned nematic liquid crystals is soft-
mode turbulence (SMT) [9–11], induced by nonlin-
ear coupling between the local convective mode and
global Nambu–Goldstone one (see Appendix for details).
SMT has a characteristic spatial structure. Because a
patchwork-like structure appears on the x-y plane when
the angle of the local convective mode is color-coded,
the structure is called patch structure [12–14]. The char-
acteristic size ξ of the single patch domain is several of
convective rolls and decreases as the distance from the

onset of SMT as ξ ∼ ε−1/2, where ε = (V/Vc)2−1 is the
normalized voltage used as a control parameter for SMT,
V denotes the magnitude of the applied AC voltage, and
Vc the threshold voltage of the electroconvection.

We have investigated SMT dynamics by measuring net
temporal autocorrelation function Q̂(τ) of turbulence-
like dynamics in a steady state. It had long been con-
sidered that the simple exponential described the relax-
ation dynamics. However, we revealed that the relaxation
deviates from the simple exponential at the vicinity of
the SMT’s onset [15]; instead, it is well-fitted by the
so-called Kohlrausch–Williams–Watts (KWW) function
[16, 17]

Q̂(τ) = α exp

[
−
(

τ
τ0

)β
]
,

employed to explain the relaxation dynamics in glass-
forming liquids (GFLs). It is considered that the coop-
erative rearranging in GFLs leads to the KWW-type re-
laxation [18]; indeed, spatially and temporally fluctuat-
ing domains have been experimentally observed near the
glass transition point. The phenomenon is called the dy-
namical heterogeneity [19–22]. The characteristic length
of the dynamical heterogeneity increases as the system
approaches the glass transition point. Although there are
many studies for GFLs showing β < 1 (i.e., stretched
exponential), the compressed-exponential behavior (i.e.,
β > 1) has been observed in some GFLs (e.g., Refs. [23–
27]). In particular, Caronna et al. reported that the KWW
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exponent β increases toward 2 with approaching the
glass transition point [26]. In SMT, the exponent is unity
(i.e., simple exponential) at a large ε and increases to-
ward 2 (i.e., Gaussian) with decreasing ε . The non-
exponential behavior of the SMT’s net relaxation orig-
inates from the patch structure. We have thus proposed
a similarity between dynamics of SMT and GFL from a
viewpoint of the spatial structure [15].

The temporal correlations of each wave number, i.e.,
modal autocorrelation functions Ûk(τ), are also suitable
for studying chaotic or turbulent dynamics. Mori and
Okamura have numerically and analytically discovered
a dual structure in the KS equation [28]; the relaxation
dynamics is dominated by the deterministic and stochas-
tic orbits in the short-time and long-time region, respec-
tively. We experimentally found the dual structure of the
modal autocorrelation in SMT and have theoretically re-
vealed the mechanisms of the dual structure [29]. It has
been reported that the spatiotemporal disorder in SMT
generates non-thermal fluctuations [12, 30] by which a
non-Markovian (i.e., memory) effect is expected to play
a significant role in the relaxation dynamics. We thus de-
rived an evolution equation for the modal autocorrela-
tion function in the projection-operator method for chaos
and turbulence [31] and have specified the memory ef-
fect due to non-thermal fluctuations. The numerically ob-
tained memory function from the experimental results
has suggested that the non-thermal fluctuations are sepa-
rated into Markov and non-Markov parts, where the lat-
ter part was named turbulent fluctuations. The relaxation
dynamics is consequently separated into three relaxation
stages: bare-friction stage, early stage, and late stage.
The bare-friction stage disappears when the dissipation
by the turbulent transport has much influence compared
to that by the molecular one; subsequently, the modal re-
laxation in SMT is represented as

Ûk(τ) ∝

⎧⎪⎪⎨
⎪⎪⎩

1−
(
τ/τ(a)k

)2
(τ � τ(Γ)k : early stage)

exp
[
−τ
/
τ(e)k

]
(τ(Γ)k � τ: late stage).

where τ(Γ)k denotes the characteristic timescale of the
memory due to the turbulent fluctuations. Furthermore,
we have proved that the memory effect due to the turbu-
lent fluctuations originates from the patch structure [29].

In this proceedings paper, we uniformly argue the net
and modal relaxation dynamics of SMT and discuss the
compressed exponential behavior and the dual structure
from a viewpoint of the harmonic analysis. This is use-
ful for experiments such as the scattering methods. The
contents are organized as follows. In Sec. 2, the net
and modal autocorrelation functions are defined and the
memory function is reviewed according to Ref. [29]. In
Sec. 3, we show our experimental results of the power

spectra and present the analytical relationship. We con-
clude this proceedings paper in Sec. 4. In Appendix, the
detail of SMT and the numerical algorithm for solving
the memory function are summarized.

2. RELAXATION DYNAMICS

2.1. Net and modal correlation functions

We observed the pattern dynamics of SMT through
the transmitted light intensity I(�r, t) with�r = (x,y). Let
Q̂(�r,τ) denote the autocorrelation function of the trans-
mitted light intensity, defined as

Q̂(�r,τ) =
〈ΔI(�r, t+ τ)ΔI(�r, t)〉

〈ΔI(�r, t)2〉 , (1)

where ΔI(�r, t) = I(�r, t)−〈I(�r, t)〉 denotes the fluctuation
of the transmitted light intensity and the angle brackets
indicate the long-time average in steady state;

〈 f (t+ τ)g(t)〉= lim
T→∞

1

2T

∫ T

−T
dt f (t+ τ)g(t). (2)

The net autocorrelation function Q̂(τ) can be defined as
the spatial average of Q̂(�r,τ);

Q̂(τ) =
1

Vd

∫
Vd

d�r Q̂(�r,τ), (3)

where Vd denotes the generalized volume of d-
dimensional system and the integral range is whole
system. The net relaxation in SMT is well described by
the KWW function and the KWW exponent β is 1 at a
large ε and approaches to 2 with decreasing ε [15].

In addition, we have focused on the modal element
u�k(t) of the fluctuation ΔI(�r, t);

u�k(t) =
∫
Vd

d�rΔI(�r, t)ei�k·�r, (4)

where i =
√−1. Because SMT is isotropic [9], it is

sufficient to study uk(t), where k denotes the radial wave

number; k = |�k|. The modal autocorrelation function is
defined as

Ûk(τ) =
〈
uk(t+ τ)u∗k(t)

〉
Pk

. (5)

Here, the asterisk symbol denotes taking the complex
conjugate and Pk=

〈|uk(t)|2〉 the spatial power spectrum.

The modal correlation function Ûk(τ) is a real number
due to the translational symmetry and isotropy. In the
rest of this paper, the wave number k is normalized by
λ0 as k̂ = kλ0/2π , where λ0 = λ0(ε) denotes the length
of a pair of electroconvections.
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One can derive the analytical relationship between the
net and modal autocorrelation functions. The autocorre-
lation of u�k(t) reduces to〈

u�k(t+ τ)u∗�k(t)
〉

=
∫∫
V 2
d

d�rd�r′
〈
ΔI(�r, t+ τ)ΔI(�r′, t)

〉
ei(�r−�r′)·�k.

(6)

Integrating the both sides with respect to�k, we obtain

Q̂(τ) ∝
∫

d�k
(2π)d

PkÛk(τ). (7)

For d = 2, the net autocorrelation function connects to
the modal one as

Q̂(τ) =

∫ ∞

0
dk kPkÛk(τ)∫ ∞

0
dk kPk

. (8)

Therefore, in SMT, the compressed-exponential behavior
appeared in the net relaxation is interpreted as a superpo-
sition of the dual structure in the modal ones.

2.2. Memory function

We have proposed an approach by the memory func-
tion derived in the projection-operator formalism [29].
The evolution equation for the modal autocorrelation
function is represented as

∂Ûk(τ)
∂τ

=−
∫ τ

0
dτ ′Γ′

k(τ− τ ′)Ûk(τ ′), (9)

where Γ′
k(τ) denotes the memory function that results

from the non-thermal fluctuations. The numerically-
obtained memory function Γ′

k(τ) has a sharp peak at
τ = 0, implying that the non-thermal fluctuations in SMT
can be divided into Markov and non-Markov parts [29],
i.e.,

Γ′
k(τ) = 2γ(0)k δ (τ)+Γk(τ). (10)

where γ(0)k denotes the bare friction due to the Markov
part of the non-thermal fluctuations and Γk(τ) the mem-
ory function caused from the non-Markov part. The evo-
lution equation (9) reduces to

∂Ûk(τ)
∂τ

=−γ(0)k Ûk(τ)−
∫ τ

0
dτ ′Γk(τ− τ ′)Ûk(τ ′). (11)

The non-Markov part of the non-thermal fluctuations is
called the turbulent fluctuations. The algorithm to numer-
ically solve the memory function is summarized in Ap-
pendix.

The macroscopic friction γ(Γ)k due to the turbulent
fluctuations is represented as [31]

γ(Γ)k =
∫ ∞

0
dτΓk(τ). (12)

Moreover, one can define a characteristic time scale of
the memory function as

τ(Γ)k =
∫ ∞

0
dτ

Γk(τ)
Γk(0)

=
γ(Γ)k
Γk(0)

, (13)

within which the memory effect due to the turbulent fluc-

tuations is alive; in other words, for τ(Γ)k � τ (late stage),
the memory function due to the turbulent fluctuations is
approximately represented by

Γk(τ)
 2γ(Γ)k δ (τ). (14)

In contrast, the non-Markovian regime τ � τ(Γ)k can

be analytically divided into τ � γ̃kτ
(Γ)
k (bare-friction

stage) and γ̃kτ
(Γ)
k � τ � τ(Γ)k (early stage) [29], where

γ̃k denotes the ratio of the bare friction to the turbulent
friction,

γ̃k = γ(0)k
/
γ(Γ)k . (15)

In the case that γ̃k � 1, the bare-friction stage shrinks;
hence, the early and late stages are observed as the dual
structure in SMT.

3. HARMONIC ANALYSIS

We first present the power spectrum Q̂ω of the fluctuation
of I(�r, t) in Fig. 1, where Q̂ω was calculated from Q̂(τ)
as

Q̂ω = 2

∫ ∞

0
dτQ̂(τ)cosωτ . (16)

In the case that the relaxation satisfies the simple expo-
nential function (i.e., β = 1 in the KWW function), the
power spectrum is analytically derived as

Q̂ω =
2τ0

1+(τ0ω)2
, (17)

where τ0 = τ0(ε) denotes the characteristic correlation
time of the relaxation. According to Ref. [11], the above
relationship reduces to

εQ̂ω =
2Λ

Λ2+Ω2
(18)

with Λ−1 = τ0ε and Ω=ω/ε . As discussed in Ref. [11],
the right-hand side of Eq. (18) does not depend on the
control parameter ε because τ0 is inversely proportional
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FIGURE 1. Log-log plots of the power spectra εQω (black
line) for several control parameters; ε = 0.050 (top left), 0.10
(top right), 0.20 (bottom left), and 0.30 (bottom right). A gray
solid line indicates the Lorenzian (18) and a gray dotted line
the Gaussian (19), where Λ is set as 0.48 s−1.

to ε [9]. On the other hand, when the relaxation is the
Gaussian (i.e., β = 2 in the KWW function), the power
spectrum is analytically represented as

εQ̂ω =

√
π

Λ
exp

[
− Ω2

4Λ2

]
. (19)

To the best of our knowledge, no analytical functions
for the Fourier transform of the KWW function with
1 < β < 2 have been proposed yet. As shown in the top
panels of Fig. 1, εQ̂ω for a small ε , where β > 1, is in do-
mains bounded by Eqs. (18) and (19). Morishita has pro-
posed that the CEF-type decay appears as coexistence of
ballistic and diffusive motion [32]. This plot style, εQ̂ω
versus Ω, helps us to intuitively understand the KWW
exponent 1< β < 2. Further, as shown in the bottom pan-
els of Fig. 1, Eq. (18) well describes the power spectrum
at a higher ε . It is evident that β converges to unity with
increasing ε .

Next, we show results of the power spectrum Ûk,ω of

the modal elements in Fig. 2, where Ûk,ω was calculated
by

Ûk,ω = 2

∫ ∞

0
dτÛk(τ)cosωτ . (20)

The harmonic analysis emphasizes on the short-time dy-
namics. Indeed, the results support appearance of the
early and bare-friction stages in SMT dynamics: As
shown in the inner plot of Fig. 2, the spectra decay lin-
early in the semi-log plot within the intermediate fre-

10-3
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10-1

65432

10-4

10-3
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100

101

^ �
   

  (
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FIGURE 2. Plot of the power spectrum Ûk,ω at ε = 0.10 for

several wave numbers; k̂ = 0.76, 1.0, and 2.0 from bottom to
top. The inner plot is a closeup in an intermediate regime.
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FIGURE 3. Plot of the power spectrum Γk,ω at ε = 0.10 for

several wave numbers; k̂ = 0.76, 1.0, and 2.0 from bottom to
top.

quency regime, signifying that the modal correlation
function is well-described by the algebraic function in
the early stage. They gently decay at a high frequency,
implying the existence of an extremely short-time dy-
namics (i.e., the bare-friction stage) dominated by the
Markov part of the non-thermal fluctuations. Note that
the power spectra of the KS equation exponentially de-
cay in large-frequency regime [28] because the bare-
friction stage does not exist there.

Finally, the Fourier transform Γk.ω of the memory
function due to the turbulent fluctuations is shown in
Fig. 3, where Γk,ω was calculated by

Γk,ω = 2

∫ ∞

0
dτΓk(τ)cosωτ . (21)

The power spectrum Γk,ω analytically relates to Ûk,ω .
Corresponding to Eq. (9), the evolution equation of uk(t)

406

Downloaded 26 Feb 2013 to 130.34.254.28. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



can be represented as

∂uk(t)
∂ t

=−
∫ t

−∞
dt ′Γ′

k(t− t ′)uk(t ′)+R′k(t), (22)

where R′k(t) denotes the non-thermal fluctuations and
satisfies 〈

R′k(t)u
∗
k(t0)

〉
= 0. (23)

Note that the integral range of Eq. (22) has been ex-
panded compared to Eq. (9); nevertheless, the contribu-
tion is included in the fluctuating term [33]. In the the-
oretical framework proposed in Ref. [31], the following
relation holds;

Γ′
k(τ) =

〈
R′k(t+ τ)R′k(t)

〉
Pk

, (24)

indicating that Γ′
k,ω allows us to investigate the non-

thermal fluctuations. It should be noted here that Eq. (24)
holds in non-equilibrium systems. From Eq. (22), the
Fourier transform uk,ω of uk(t) satisfies(

iω+Γ′
k[ω]

)
uk,ω = R′k,ω , (25)

where Γ′
k[ω] denotes the Fourier-Laplace transform of

Γ′
k(t), defined as

Γ′
k[ω] =

∫ ∞

0
dτΓ′

k(τ)e
−iωτ . (26)

The power spectrum of uk(t) is thus written as

Ûk,ω =
Γ′
k,ω

|iω+Γ′
k[ω]|2

. (27)

Under the condition (10), Eq. (27) reduces to

Ûk,ω =
2γ(0)k +Γk,ω(

γ(0)k + Γk,ω
/

2
)2
+(ω+ ImΓk[ω])2

. (28)

Although this is equivalent to Eq. (11), it might be more
compatible with experiments such as the scattering meth-
ods. Because Γk,ω rapidly decay as shown in Fig. 3,
Eq. (28) for a sufficiently large ω approximately reduces
to

∂ 2Ûk(τ)
∂τ2

= −2γ(0)k δ (τ)

⇒ Ûk(τ) = 1− γ(0)k |τ|, (29)

i.e., the relaxation in the bare-friction stage is approxi-
mately linear decay, as mentioned in Ref. [29]. In con-
trast, at a sufficiently small ω where ImΓk[ω]→ 0, we
obtain the macroscopic friction coefficient [31] as

γ(0)k + γ(Γ)k = 1/τ(U)k , (30)

where τ(U)k denotes the characteristic timescale of the
modal autocorrelation function, defined as

τ(U)k =
∫ ∞

0
dτÛk(τ). (31)

4. SUMMARY

We have studied the relaxation dynamics of SMT, aiming
to clarify statistical-physical properties in the nonlinear
nonequilibrium systems. Because the net autocorrelation
function is a weighted mean of themodal autocorrelation
functions, it has turned out that the CEF decay in SMT
appears as a superposition of the dual structure. Further,
this proceedings paper has concentrated on the temporal
power spectra of pattern dynamics and its modal element.
The plot style of Fig. 1 is compatible with the viewpoint
that the coexistence of the ballistic and diffusive motions
produces a CEF decay. The physical origin of the rela-
tionship between CEF and complex systems such as the
glassy dynamics is still an open question; however, the
emergence of the CEF decay on SMT will provide us
with a clue. In addition, we have shown the power spec-
tra Ûk,ω and Γk,ω and discussed the dual structure from
a viewpoint of the harmonic analysis. Techniques such
as the scattering experiments can measure γ(0) +Γk[ω]
as the complex friction coefficients; therefore, the equa-
tions such as Eq. (28) will be helpful to investigate the
turbulent fluctuations.
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APPENDIX

Soft-mode turbulence

Instability in liquid crystal systems leads to pattern
formation [34, 35]. Electrohydrodynamic convection is
such a self-organizing phenomenon observed in ne-
matic liquid crystal [36]. Let us consider systems of ne-
matic liquid crystals with negative dielectric constant
anisotropy εa = ε‖ − ε⊥, where ε‖ denotes the dielec-
tric constant parallel to the director n = n(x,y,z) rep-
resenting the molecular orientation of a liquid crystal,
ε⊥ the dielectric constant perpendicular to n. When the
AC voltage larger than a threshold magnitude is applied
to the systems, the electroconvection occurs due to the
so-called Carr–Helfrich effect [37, 38], interaction be-
tween the anisotropy of the liquid crystals and electri-
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cal current by impurity ions. The characteristic length
scale of the electroconvection is much shorter than that
of the heat convection, and consequently characteristic
time scales of the electroconvection are easy to access
in experiments. Thus, the electrohydrodynamic convec-
tion has been studied as an ideal subject for the dissi-
pative structure [39]. The squared magnitude V 2 and in-
verse frequency 1/ f of the AC voltage correspond to the
Rayleigh number and the Prandtl number, respectively
[40], where the former is proportional to the temperature
difference and the latter is equivalent to the ratio of the
viscous diffusivity to the thermal one in the Rayleigh–
Bénard convection.

There are two types of layer alignment in nematic liq-
uid crystal; one is planar alignment in which the director
aligns parallel to substrates (x-direction), and the other
is homeotropic alignment in which the director aligns
perpendicular to substrates (z-direction). The rubbing
to x-direction on the substrate’s surface (x–y plane) is
treated to make planer systems, and intrinsically breaks
the rotational symmetry. In systems where nematic liq-
uid crystals are homeotropically anchored at boundary
(x-y plane), rotational symmetry are alive at the ground
state as well as translation symmetry. With increasing
magnitude V of the AC voltage parallel to z-axis, the
Fréedericksz transition occurs at a threshold voltage VF

[41]. The directors n tilt in an arbitrary direction with
respect to the z-axis above VF, accompanied by sponta-
neous violation of the rotational symmetry. The projec-
tion of the director onto the x-y plane, called C-director,
can rotate on the x-y plane without requiring additional
energy, i.e., C-director behaves as the Nambu–Goldstone
mode [42–44]. With further increasing V , the electrohy-
drodynamic convection occurs at the electroconvective
threshold voltageVc. The nonlinear coupling between the
convective mode q(x,y) and the Nambu–Goldstone one
C(x,y) induces spatially and temporally disordered pat-
tern called soft-mode turbulence (SMT) [9–11]. SMT is
regarded as an experimentally observed spatiotemporal
chaos. The diversity of the relaxation time at the onset of
SMT implies that SMT arises supercritically at Vc. The
correlation length is finite but much longer than excited
and dissipative lengths, where energy is injected at the
excited length scale and dissipated at the smaller one.

There are two types of SMT pattern; oblique rolls in
f < fL and normal rolls in f > fL, where fL denotes the
Lifshitz frequency [9, 10]. The interaction between the
convective and Goldstone modes are different between
oblique and normal rolls [45, 46]; the convective wave
vector in SMT tend to become parallel to the C-director
in the normal roll and oblique in the oblique roll. The
patch structure is observed only in the oblique rolls [13,
14].

We have studied the two-dimensional pattern dy-
namics of SMT. The experimental setup for this study

refers to a standard one [9, 15, 29, 47, 48]. We filled
the space between two parallel glass plates with the
nematic liquid crystal, N–(4–Methoxybenzilidene)–4–
buthylaniline (MBBA). The surfaces of the plates were
coated with transparent electrodes, indium tin oxide
(ITO), which is a circular electrode with the radius 13
mm. The dielectric constant parallel to the director was
6.25 and the electric conductivity parallel to the direc-
tor 1.17× 10−7 Ω−1m−1. Note that the dielectric con-
stant anisotropy εa is negative. The thickness between
the plates is 50 μm for the net relaxation dynamics
and 27 μm for the modal relaxation dynamics. To ob-
tain the homeotropic alignment, the surface was laid by
a surfactant, DMOAP (N, N–dimethyl–N–octadecyl–3–
aminopropyl–trimethoxysilyl chloride 50%).

AC voltage V (t) =
√

2V cos(2π f t) was applied to the
sample. The threshold voltage Vc for electroconvection
was 7.78±0.05 V. We fixed f = 100 Hz that was much
less than fL to obtain the oblique rolls. The temperature
was set at 30.00± 0.05 ◦C and the magnetic field was
absent in this study. Before each sampling, we waited for
10 min atVw = 6.0 V and then for 10 min at setV , where
VF < Vw < Vc. The waiting time is sufficiently long for
systems to become steady state.

The transmitted light intensity at each pixel were dig-
itized into 8-bit (i.e., 256-level) information, where a
series of pattern analyzing was processed according to
Ref. [49].

Numerical algorithm to calculate memory
function due to turbulent fluctuations

In order to solve the memory function numerically by
using an experimentally-obtained modal autocorrelation
function Û(τ), we employed fitting by an expansion for
short-time regime and numerical integral of the evolution
equation (11) for otherwise. Note that the wave-number
dependence was omitted in the appendix; however, the
coefficients actually depend on the wave number k.

We first obtained the coefficients {an} of an expansion
around τ = 0 by fitting:

Û(τ) = 1+
∞

∑
n=1

anτn. (32)

Suppose that the memory function Γ(τ) caused by the
turbulent fluctuations is described by a continuous func-
tion, i.e.,

Γ(τ) =
∞

∑
n=0

bnτn. (33)

Equation (11) provides the bare friction as

γ(0) =−a1. (34)
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Moreover, the coefficients {bn} of the memory function
as

b0 = a1
2 −2a2 (35)

and for n≥ 1,

bn = −(n+2)(n+1)an+2+(n+1)a1an+1

−
n

∑
m=1

ambn−m
(
n
m

)−1

. (36)

For the long-time region, we solved the difference
equation of Eq. (11). We first introduce ΔUN as the
central difference;

ΔÛN =
ÛN+1/2 −ÛN−1/2

Δt
(37)

where ÛN = Û(NΔt), N denotes an integer, and Δt the
time lag. Then, the evolution equation is digitalized to

ΔÛN+1/2 =
ÛN+1 −ÛN

Δt

= −γ(0)ÛN+1/2 −
∫ τ

0
dτ ′Γ(τ ′)Û(τ− τ ′),

(38)

where τ should be interpreted as (N+ 1/2)Δt. The con-
volutional integral is further digitalized to

∫ τ

0
dτ ′Γ(τ ′)Û(τ− τ ′)

=
∫ Δt/2

0
dτ ′Γ(τ ′)Û(τ− τ ′)

+
N

∑
M=1

∫ (M+1/2)Δt

(M−1/2)Δt
dτ ′Γ(τ ′)Û(τ− τ ′)


 Δt
2
Γ0ÛN+1/2+

N

∑
M=1

ΔtΓMÛN−M+1/2 (39)

with ΓN = Γ(NΔt). Therefore, the memory function is
solved numerically as

ΓN = − 2

Δt2
ÛN+1 −ÛN
Û1+Û0

− γ(0)

Δt
ÛN+1+ÛN
Û1+Û0

−Γ0

2

ÛN+1+ÛN
Û1+Û0

− 1

Û1+Û0

N−1

∑
M=1

ΓM(ÛN−M+1+ÛN−M) (40)

for N ≥ 1. The above discretization is not unique, of
course; however, the way to discretize contributes only
higher-order errors.

The assumption (33) does not hold for Γ′(τ) because
it has singularity at τ 
 0 originates from the Markov

part of the non-thermal fluctuations. When one solves
Γ′(τ) numerically, the discrete analysis (40) with γ(0) = 0
should be used for whole time region. Note that the initial
value of the memory function is described by

Γ′
0 =− 4

Δt2
Û1 −Û0

Û1+Û0

. (41)
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