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Abstract

Extensive molecular-dynamics simulations on two different glass-forming systems are performed to test the prediction

proposed recently by the mean-field theory (MFT) of glass transition that a fragile system can be mimicked by a simpler

one near their glass transitions. One is a simulation for a hard-sphere fluid with size polydispersity where the volume

fraction f is a control parameter and the other is for a Lennard-Jones binary mixture where the inverse temperature 1=T is

a control parameter. Then, their mean-square displacements are fully analyzed by MFT. Thus, we show that both results

are collapsed on a master curve given by MFT when DL
S ðfÞ ¼ DL

SðTÞ, where DL
S is a long-time self-diffusion coefficient. We

also investigate the non-singular behavior of DL
S consistently from a unified standpoint based on MFT. Thus, we show that

macroscopic physical quantities in a fragile system can be transformed into those in a simpler one through a universal

parameter DL
S .

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Study of glass formation is one of the pioneering works in condensed matters physics. Despite decades of
many researches, our understanding of the glass transition from liquid to glass is still incomplete.
Nevertheless, considerable attention has been drawn to universal features in various complex systems near the
glass transitions [1–5].

In order to study the long-lived spatial heterogeneities in suspensions of hard-sphere colloids near the
colloidal glass transition [6], Tokuyama [7] has derived the nonlinear stochastic diffusion equation for
the density fluctuation. By employing the fact that the non-Gaussian parameter is negligible even near the
colloidal glass transition, he has then derived a nonlinear mean-field equation for the particle mean-square
displacement from that stochastic equation [8]. According to this idea, substantial extensions were made to
e front matter r 2007 Elsevier B.V. All rights reserved.
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study not only the slow dynamics of colloidal suspensions, but also that of molecular systems near
the glass transition, leading to the mean-field theory (MFT) [9–13]. The essential points of MFT are as
follows [12,13]:
(i)
 The mean-square displacement obeys the nonlinear mean-field equations, which describe not only the
slow dynamics of colloidal suspensions but also that of the molecular systems near the glass transition.
Those equations contain two unknown coefficients, the mean-free path ‘ðpÞ and the long-time self-
diffusion coefficient DL

SðpÞ, where p is a control parameter, such as a volume fraction and an inverse
temperature.
(ii)
 The mean-free path ‘, within which the particles can move freely without any interactions, is obtained by
fitting the mean-field equations with experiments and simulations. It is shown to be uniquely determined
by DL

S only.

(iii)
 The long-time self-diffusion coefficient DL

S , which results from the long-time correlation effect due to the
many-body interactions between particles, is obtained by the fitting with experiments and simulations.
First, the fitting results are used to find a singular function of p, which can partially describe the
experiments and the simulations. The singular function contains two unknown coefficients, a singular
point pc and a positive constant �. Both coefficient are determined by the fitting, where pc depends on the
details of many-body interactions, such as polydispersity, while � is constant if the main interactions are
the same in different systems. The singular function deviates from the fitting values at higher values of p.
Hence a non-singular function of p is then obtained from the singular function by introducing a
transformation from p to a new variable pn, which contains an unknown coefficient a. This can describe
the experiments and the simulations very well, where a is constant if the main interactions are the same in
different systems.
(iv)
 DL
S is a universal parameter. At a given value of DL

S , the macroscopic physical quantities in any systems
become identical with each other. Hence one can map the dynamics in one system onto another
consistently. This suggests that the dynamics of a fragile system can be predicted by that of a simpler
system.
In this paper, we perform the extensive molecular-dynamics simulations on two different systems,
hard-sphere fluids and Lennard-Jones binary mixtures. Thus, we demonstrate the essential points (i)–(iv)
discussed above by analyzing those simulations by MFT, in addition to the previous related works.

The paper is organized as follows. In Section 2 we briefly describe the MFT. In Section 3 we analyze the
simulation results on two different systems by MFT, the hard-sphere fluids and the Lennard-Jones binary
mixtures. In Section 4 we discuss the dynamical mapping from one system to another at a given value of DL

S .
We conclude in Section 5 with a summary.
2. Mean-field theory

In this section, we briefly summarize and discuss the MFT recently proposed [8,12], which consists of the
following two essential points: (A) a nonlinear mean-field equation for the mean-square displacement, and (B)
a non-singular long-time self-diffusion coefficient. Next we discuss those separately.
2.1. Mean-field equations

We consider a three-dimensional equilibrium system surrounded by the heat bath with temperature T, in
which there exist N particles of interest with mass m and radius a in the volume V. Then, the mean-square
displacement M2ðtÞ is given by

M2ðtÞ ¼
1

N

XN

i¼1

h½X iðtÞ � X ið0Þ�
2i, (1)
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where X iðtÞ denotes a position vector of ith particle and the brackets, the equilibrium ensemble average. Then,
the MFT shows that the slow dynamics of the molecular systems near the glass transition can be described by
the following nonlinear equation for the mean-square displacement M2ðtÞ:

d

dt
M2ðtÞ ¼ 2dDL

SðpÞ þ 2d
v20
d

t�DL
SðpÞ

� �
e�M2ðtÞ=‘

2

(2)

with the long-time self-diffusion coefficient DL
SðpÞ and the mean-free path ‘ðpÞ, where p is a control parameter,

such as a volume fraction f and an inverse temperature bð¼ 1=TÞ, v0ð¼ ðdkBT=mÞ1=2Þ the average velocity of a
particle, and d a spatial dimensionality. Here the mean-free path ‘ðpÞ is a length in which a particle can move
freely without any interactions between particles and can be determined by a fitting with data.

The formal solution of Eq. (2) is given by

M2ðtÞ ¼ 2dDL
Stþ ‘2 ln e�2 dt=tb þ

1

2d2

tb
tf

� �2

1� 1þ 2d
t

tb

� �
e�2 dt=tb

� �" #
, (3)

where tbð¼ ‘2=DL
SÞ denotes a time for a particle to diffuse over a distance of order ‘ with the diffusion

coefficient DL
S , and tf ð¼ ‘=v0Þ is a free time during which each particle can move freely without any

interactions between particles. As discussed in Ref. [13], by introducing the dimensionless variables X̂ ¼ X=a

and t̂ ¼ t=t0, the solution (3) is written as

M̂2ðtÞ ¼ 6D̂Lt̂þ ‘̂
2
ln e�6D̂Lt̂=‘̂

2

þ
1

18

‘̂

D̂L

 !2

1� 1þ 6
D̂Lt̂

‘̂
2

 !
e�6D̂Lt̂=‘̂

2

( )2
4

3
5, (4)

where D̂L ¼ DL
S=av0, ‘̂ ¼ ‘=a, t0 ¼ a=v0, and d ¼ 3 here. From Eq. (4), one can find the following asymptotic

forms:

M2ðtÞ ’
t̂
2

for t̂51;

6D̂LðpÞt̂ for t̂b1:

(
(5)

As discussed in Ref. [13], for intermediate times, M2ðtÞ obeys a logarithmic growth and a power-law
growth of a super-diffusion type with two different characteristic times, a caging time tg and a b-relaxation
time tb.

We should note here that in the present paper the length is scaled by radius a and the velocity is scaled by

the average velocity v0ð¼ ðdkBT=mÞ1=2Þ, although in Ref. [13], those are scaled by diameter s and the velocity

ðkBT=mÞ1=2, respectively. This scaling is rather reasonable because only under such a scaling the ratio of the

long-time self-diffusion coefficient DL
S in the monodisperse hard-sphere fluid to that in the suspension of

monodisperse hard spheres without hydrodynamic interactions coincides with the short-time self-diffusion

coefficient DS
S caused by the hydrodynamic interactions [11]. Hence all the length and the average velocity in

the molecular systems discussed in Ref. [13] must be rescaled by them. This is done by just replacing D̂L by

ð2=
ffiffiffi
3
p
ÞD̂L and does not cause any serious quantitative corrections to the previous results obtained for the

molecular systems.
The mean-square displacements of simulations are first analyzed by using Eq. (4). Thus, two unknown

parameters D̂LðpÞ and ‘̂ðpÞ are found by fitting the mean-field results with simulations and then ‘̂ is shown to
be a function of D̂L. Hence the time evolution of M̂2ðtÞ is shown to depend only on D̂LðpÞ.

As shown in Ref. [13], as p is increased, the supercooled state and the glassy state appear at pb (or D̂b) and pg

(or D̂g), respectively, where pg4pb ðD̂goD̂bÞ. Here the experiment of the colloidal suspension [14] suggests

that D̂b ’ 2:9512� 10�3ð’ 10�2:530Þ at fb ’ 0:544 and D̂g ’ 9:1622� 10�6ð’ 10�5:038Þ at fg ’ 0:580. As

discussed in Ref. [13], these values might be universal and be used to determine pb and pg in the other systems.
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2.2. A non-singular long-time self-diffusion coefficient

We next discuss another important prediction by MFT [12]. It is a prediction that the experimental and the
simulation results for the long-time self-diffusion coefficient can be approximately described by a singular
function

DS
LðpÞ

D0
¼

DS
SðpÞ

D0

1� Cp

1þ �ðDS
S=D0Þðp=pcÞð1� p=pcÞ

�2
, (6)

where pc is a singular point caused by the many-body interactions between particles and � a positive coefficient
to be determined. The singular part in the denominator of Eq. (6) results from the long-time correlation effect

due to the many-body interactions between particles. Here DS
SðpÞ is the short-time self-diffusion coefficient, D0

a single-particle diffusion constant, C the long-time coupling effect between different interactions, and D0 ¼

D0 for the suspensions and D0 ¼ av0 for the molecular systems. For the suspensions of hard spheres the

theoretical result for DS
SðfÞ=D0 is given by Eq. (11) of Ref. [15], where Cð¼ 9=32Þ is the coupling effect

between the hydrodynamic interactions and the direct interactions. On the other hand, for all molecular

systems, DS
SðpÞ=D0 ¼ 1 and C ¼ 0, except the hard-sphere fluids, where DS

SðfÞ=D0 is given by Eq. (11) of Ref.

[15] (see Ref. [11] for details). As shown in the next section, the value of � depends on the systems but does not
depend on the details of the long-time many-body interactions, such as a polydispersity, while pc depends on
those details.

The experimental and simulation results deviate from the singular function given by Eq. (6) at higher
values of p and obey rather a non-singular function of p [12]. We next derive it by using Eq. (6). As discussed in
Refs. [9,10], in order to avoid a singular part in Eq. (6), we introduce a transformation from p to a new
variable pn by

pn ¼ pþ 10�a
p

pcðpc � pÞ
, (7)
lo
g
1
0
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0
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Fig. 1. (Color online) A log plot of DL
S ðfÞ=D0 versus f. The circles indicate the experimental results from Ref. [14]. The dotted line

indicates the singular function given by Eq. (6) and the solid line the non-singular function given by Eq. (6) with Eq. (7), where � ¼ 1,

a ’ 4:86, fc ’ 0:556, and C ’ 9=32.
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where a is a positive constant to be determined. Solving Eq. (7) for p and inserting it into Eq. (6), one can thus
determine the coefficient a so that DL

SðpnÞ fits the experimental and simulation results. As shown in the next
section, a depends on the system but does not depend on the details of the long-time many-body interactions,
such as a polydispersity. In Fig. 1, the experimental data for the suspension of dense neutral colloids with the
6% size polydispersity [14] are shown versus the volume fraction f, where fc ’ 0:556, a ’ 4:86,
and C ’ 9=32. Here the main mechanisms are hydrodynamic interactions between particles and direct
interactions between particles. The data deviate from the singular function given by Eq. (6) at higher volume
fractions and are described by the non-singular function given by Eq. (6) with Eq. (7) very well. As shown in
the next section, this value of a is the same as that in hard-sphere fluids, where only the direct interactions
exist.

3. Analyses of simulation data by MFT

In this section, we analyze the simulation data for the mean-square displacements by employing the MFT.
We study two different molecular systems, hard-sphere fluids with different size polydispersities and Lennard-
Jones binary mixtures.

3.1. Hard-sphere fluids

We first analyze the simulation data for hard-sphere fluids.
The system consists of 10 976 hard spheres with radius ai and mass mi in a cubic box of volume V at a

constant temperature T, where the distribution of radii obeys a Gaussian distribution with standard deviation
s divided by the average radius a, and mass mi is proportional to a3

i . Then, the control parameter is the volume
fraction given by f ¼ ð4pa3N=3V Þð1þ 3s2Þ. The mechanism of this system is only a direct interaction between
particles. Let V iðtÞ be a velocity of ith particle. Then, the motion of ith particle is described by the Newton
equation

mi

d

dt
V iðtÞ ¼

X
jai

FðX ijÞ, (8)

where FðX ijÞ denotes the force due to the elastic binary collisions between particles i and j, and X ij ¼ X i � X j.
We first scale the position vector X i with radius a, time t with t0, and DL

S with av0. Then, we solve Eq. (8) under
a periodic boundary condition and appropriate initial conditions together with the momentum and the energy
conservation laws. The simulations start from disordered initial states which are obtained by using the Jodrey
and Tory’s [20] algorithm. We first wait for a long time which is enough to reach a final state where the mean-
square displacement M2ðtÞ grows linearly in time. By choosing this final state as an initial state, we then repeat
the simulations again until the whole time behavior of M2ðtÞ coincides with a previous one. The whole time is
counted as a waiting time to reach an equilibrium. We discuss the following three cases where the
polydispersity is given by s ¼ 0; 0:06, and 0.15. The waiting time is of order 105t0. Here the simulation data for
s ¼ 0:06 are taken from Refs. [18,19].

Depending on the value of s, the system shows different phases for higher volume fractions. When s ¼ 0, the
crystallization occurs for f40:535, showing a first-order phase transition. When s ¼ 0:15, no crystallization
occurs at any volume fractions, leading to a glass transition for higher volume fractions. On the other hand,
when s ¼ 0:06, re-entrant melting (transition from crystal to supercooled liquid) followed by a glass transition
occurs temporarily within a waiting time of order 105t0 but the crystallization finally starts to occur for much
longer waiting times of order 2� 105t0 [19]. From a stand point based on the MFT [13], the supercooled point
over which the supercooled state appears is suggested as log10ðD̂bÞ ’ �2:530 and the glass transition point is
log10ðD̂gÞ ’ �5:038. From this point, there are three phases in the system with s ¼ 0:15; a liquid phase [L] for
fofbð’ 0:5611Þ, a supercooled liquid phase [S] for fbpfofgð’ 0:5981Þ, and a glass phase [G] for fgpf.
Here the phases in the system with s ¼ 0:06 were already discussed in Ref. [19].

In Fig. 2, the mean-square displacement M2ðtÞ is shown for different volume fractions at s ¼ 0, 0.06, and
0.15 together with the mean-field results given by Eq. (4). Within error, one can fit the mean-field results with
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Fig. 2. (Color online) A log–log plot of M2ðtÞ versus time at different polydispersities. The symbols indicate the simulation results and the

solid lines the mean-field results given by Eq. (4). (a) s ¼ 0 for f ¼ 0:30; 0:40; 0:50, and 0.535 (from left to right), (b) s ¼ 0:06 for f ¼ 0:51,
0.53, 0.54, 0.5575, 0.56, 0.5780, 0.58, 0.586, and 0.6 (from left to right), and (c) s ¼ 0:15 for f ¼ 0:50, 0.53, 0.55, 0.56, 0.57, 0.58, 0.59, and
0.60 (from left to right).
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the simulation results well by adjusting the mean-free path ‘ appropriately, except a highly supercooled state
and a glassy state for fXfc. In such states, the MFT does not fit with the simulation results because it can
describe only the dynamics of the system in equilibrium but the system is still in a metastable state,
approaching to an equilibrium state very slowly.

In Fig. 3, the fitting results for the long-time self-diffusion coefficient DL
SðfÞ are plotted at different

values of s. As discussed in Refs. [11,12], the simulation results can be partially described by the
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Fig. 3. (Color online) A log plot of DL
S ðfÞ versus f for different polydispersities; (a) s ¼ 0, (b) 0.06, and (c) 0.15. The symbols indicate the

simulation results, the solid lines the non-singular function given by Eq. (9) with Eq. (12), and the dotted lines the singular function given

by Eq. (9). The vertical dot-dashed line indicates D̂b and the vertical dotted line D̂g. (d) A log plot of DL
S ðfÞ versus f=fcðsÞ for all

polydispersities.
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singular function

DL
SðfÞ
av0

¼
DS

SðfÞ
D0

1

1þ �ðDS
S=D0Þðf=fcðsÞÞð1� f=fcðsÞÞ

�2
, (9)
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where C ¼ 0 and � ¼ 1. The reason why the short-time self-diffusion coefficient DS
SðfÞ should appear in Eq. (9)

was fully discussed in Refs. [11,19]. This is needed to fit Eq. (9) with the simulation results even at lower
volume fractions. Near fc, however, Eq. (9) reduces to

DL
SðfÞ
av0

/ 1�
f
fc

� �2

. (10)

Then, DL
S does not depend on DS

S near fc. Hence one may take DS
S=D0 ¼ 1 for intermediate volume fractions

as in the other molecular systems. The singular point fcðsÞ depends on s and is given by

fcð0Þ ’ 0:5828; fcð0:06Þ ’ 0:5845; fcð0:15Þ ’ 0:5923. (11)

Here we note that the effect of the polydispersity on DL
S appears only in the singular point fc because the

mechanisms in the systems are the same as each other, irrespective of polydispersities. The simulation results
for s ¼ 0:06 and 0.15 start to deviate from such a singular function at higher volume fractions and are well
described by the non-singular functions discussed in Ref. [19], where for s ¼ 0 no result exists for f40:535
because of crystallization. In fact, the non-singular function can be obtained by introducing a transformation
from f to a new variable fn by

fn ¼ fþ 10�a
f

fcðfc � fÞ
. (12)

Here a is a positive constant and is determined so that Eq. (9) can fit the simulation results. In fact, we find for
all values of s

a ’ 4:86. (13)

If DL
S is plotted versus f=fcðsÞ, therefore, all simulation results are collapsed on only one non-singular curve.

This is shown in Fig. 3(d). We note here that a does not depend on s and is the same as that in the suspension
of colloids. Hence, the experimental data are also collapsed on the same curve as that in Fig. 3(d) if those data
are divided by 1� Cf, where C ¼ 9=32. Thus, the value of a is determined by only the direct interactions.

By fitting the solution (4) with the simulation results, one can also obtain the fitting values of the mean-free
path ‘. In Fig. 4, ‘=‘0 is shown at different polydispersities, where ‘0 is a fundamental length in the system. As
discussed in Ref. [13], ‘=‘0 is determined by D̂L only, irrespective of the polydispersity s. In fact, all data seem
to be collapsed on a single curve within error. This is reasonable because D̂L indicates the long-time
correlation effect due to the many-body interactions between particles and hence the average spatial structures
in different systems are considered to be identical with each other at the given value of D̂L, leading to the same
mean-free path. Hence all the simulation results for M2ðtÞ obey a master curve given by Eq. (4) at a given value
of D̂L (see Section 4).

Finally, we discuss the universal nature for the pressure P. In the hard-sphere fluids, the pressure is given by

PV

NkBT
¼ 1�

2

3NkBTDt

X
collisions

mimj

mi þmj

V ij � X ij , (14)

where the summation is taken over all the collisions occurred in an appropriate unit time Dt, and
V ij ¼ V i � V j. In Fig. 5, the pressure P in the liquid state is plotted versus f for different polydispersities,
s ¼ 0; 0:06, and 0.15. All data are shown to partially obey the power law

PV

NkBT
¼ A 1�

f
frcp

 !�B

, (15)

where A and B are positive constants to be determined, and frcp is a random close packing fraction given by
0.64. We note here that the singular behavior given by Eq. (15) is similar to that obtained in the previous
simulation results [21–23] but the values of the exponent B are slightly different from theirs. In order to test
whether D̂L is a universal parameter or not, we next plot the pressure P versus D̂L in Fig. 6. All data are shown
to be collapsed on a single curve, which is unknown. Thus, D̂L is verified to be a universal parameter. For
comparison, one of power laws given by Eq. (15) is also plotted by using Eqs. (9) and (12). This power law can



ARTICLE IN PRESS

log10(DS
L/av0)

0.2

0.3

0.4

[G] [S] [L]

0.5

0.1

0
-7 -5 -4-6 -3 -2 -1 0

Fig. 4. A plot of the mean-free path ‘=‘0 versus D̂L. The symbols indicate the fitting values of the mean-free path at s ¼ 0 ðnÞ, 0.06 ð�Þ,

and 0.15 ð&Þ, where ‘0 ¼ a. The symbols ðþÞ indicate the fitting values of ‘̂ for M̂2ðtÞ in the Lennard-Jones binary mixtures where

‘0 ¼ sAA=2, and the symbols ð}Þ the fitting values in the confined Lennard-Jones binary mixtures where ‘0 ¼ ð1:26=0:94ÞsAA=2. The
vertical dot-dashed line indicates D̂b and the vertical dotted line D̂g.

PV
/N

k B
T

φ

80

60

50

40

30

20

10

70

0
0.3 0.4 0.450.35 0.5 0.55 0.6 0.65 0.7

Fig. 5. (Color online) A plot of the pressure P in the liquid state versus f. The symbols indicate the simulation results at s ¼ 0 ð&Þ, 0.06
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describe well the results for volume fractions higher than 0.5. We note that in the supercooled liquid, the
pressure P seems to increase gradually as D̂L decreases, while in the other states it increases steeply.
3.2. Lennard-Jones binary mixtures

We next analyze the simulation data for Lennard-Jones binary mixtures. Our system contains N ¼ 10 976
particles with mass m, which is composed of NA ¼ 8780 particles of type A and NB ¼ 2196 particles of type B,
where NA=N ’ 0:8. The interaction pair potential is given by

UabðrÞ ¼ 4�ab
sab
r

	 
12
�

sab
r

	 
6� �
, (16)

where indices a;b run on the particle types A and B. The parameters are chosen as in Ref. [16];
�AA ¼ 1:0;sAA ¼ 1:0; �AB ¼ 1:5;sAB ¼ 0:8; �BB ¼ 0:5, and sBB ¼ 0:88. Let Xa

i ðtÞ denote the position vector of
ith particle of type a. Then, the ith particle of type a obeys the Newton equation

m
d2

dt2
Xa

i ðtÞ ¼ �ra

X
b

X
j

UabðX
ab
ij Þ, (17)

where Xab
ij ¼ Xa

i � Xb
j . The simulations are performed with the interaction potential cut at 2:5sab, and the box

length of the cubic simulation cell is 20:89sAA. The average particle distance L0 is given by
L0 ¼ 20:89sAA=10 976

1=3 ¼ 0:94sAA. Periodic boundary conditions are used. Length, time, and temperature
are scaled by að¼ sAA=2Þ, a=ð3�AA=mÞ1=2, and �AA=kB, respectively. The control parameter is an inverse
temperature bð¼ 1=TÞ. The Newton equations were solved by the velocity Verlet algorithm. The system was
equilibrated via a velocity rescaling procedure at each temperature. The waiting time to equilibrate the system
is of order 105t0.
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simulation results and the solid lines the mean-field results given by Eq. (4).
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Fig. 8. (Color online) A log plot of the long-time self-diffusion coefficient DL=av0 versus 1=T . The solid line indicates the non-singular

function given by Eq. (13) with Eq. (14) and the dotted line the singular function given by Eq. (13). (a) The filled circles indicate the present

simulation results for the Lennard-Jones binary mixtures, where � ¼ 46:77, a ¼ 2:05, and bc ’ 2:1285ðTc ’ 0:4698Þ. (b) The filled

diamonds indicate the simulation results for the confined Lennard-Jones binary mixtures from Ref. [17], where � ¼ 46:77, a ¼ 2:05, and
bc ’ 2:9070ðTc ’ 0:3440Þ.
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In Fig. 7, the time evolution of M2ðtÞ is shown versus the scaled time t=ðT1=2t0Þ for different temperatures;
T ¼ 1:428, 1.0, 0.769, 0.667, 0.588, 0.526, 0.478, and 0.417. Within error, one can fit the mean-field results with
the simulation results well by adjusting the mean-free path ‘ appropriately, except a highly supercooled state
and a glassy state for bXbc, where bc is a singular point discussed below. From this fitting, one can obtain the
long-time self-diffusion coefficient D̂L and the mean-free path ‘̂ consistently.

In Fig. 8, a log plot of D̂L is shown versus 1=T . From a stand point based on the MFT [13], one can find
three phases in this system; a liquid phase [L] for T4Tb, a supercooled liquid phase [S] for TbXT4Tg, and a
glass phase [G] for TgXT , where Tb ’ 0:6758 (bb ’ 1:4797) and Tg ’ 0:4376 (bg ’ 2:2851). The simulation
results can be partially described by the singular function

DL
SðbÞ
av0

¼
1

1þ �ðb=bcÞð1� b=bcÞ
�2

, (18)

where bc ’ 2:1285 ðTc ’ 0:4698Þ and � ’ 46:77. Similar to the hard-sphere fluids, the simulation results also
deviate from this singular function at lower temperatures and are described by the non-singular functions well.
The transformation from b to a new variable bn is given by

bn ¼ bþ 10�a
b

bcðbc � bÞ
, (19)

where a ’ 2:05: Then, the non-singular function can describe the simulation results well within a waiting time
of order 2� 105t0 (see Fig. 8).

As discussed in the previous section, the coefficients � and a do not depend on the details of the long-time
many-body interactions, while Tc does. This was already shown for the hard-sphere fluids. In order to show
this even for Lennard-Jones binary mixtures, for comparison we take the simulation results by Gallo et al. [17]
for a Lennard-Jones binary mixture embedded in an off-lattice matrix of soft spheres, where the average
particle distance L0 is given by L0 ¼ 12:6sAA=1000

1=3 ¼ 1:26sAA. In Fig. 8, the results are also shown versus
1=T for comparison. The simulation results are well described by the singular and the non-singular functions
Tc/T
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Fig. 9. (Color online) A log plot of the long-time self-diffusion coefficient DL=av0 versus Tc=T for two different Lennard-Jones binary

mixtures. The details are the same as in Fig. 8.
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given by Eqs. (13) and (14), respectively, where bc ’ 2:9070 ðTc ’ 0:3440Þ, � ’ 46:77, and a ’ 2:05. In Fig. 9,
a log plot of D̂L is shown versus Tc=T for both simulation results. Those results turn out to be collapsed on the
non-singular master curve given by Eq. (13) with Eq. (14). Thus, one can conclude that for any systems the
coefficients � and a do not depend on the details of the many-body interactions if the main mechanisms are the
same, while Tc depends on them.

In Fig. 4, the fitting values of the mean-free path ‘̂ for the Lennard-Jones binary mixture and also those for
the confined Lennard-Jones binary mixture are shown together with the results for hard-sphere fluids. Here in
the binary mixture ‘0 is chosen as ‘0 ¼ a, while in the confined binary mixture it is chosen as ‘0 ¼ ð1:26=0:94Þa
since its average particle distance is L0 ¼ 1:26sAA and that of the binary mixture is L0 ¼ 0:94sAA. Within
error, those values are collapsed on the same curve as that obtained for hard-sphere fluids. Thus, the mean-
free path ‘̂ is determined by D̂L only. This suggests that the dynamics in different systems becomes identical
with each other at a given value of D̂L. We discuss this next.
4. A dynamical mapping

In this section, we discuss a dynamical mapping from one system to another at a given value of D̂L. As
discussed in Ref. [13], the dynamics in any equilibrium systems become identical at a given value of D̂L. This
means that D̂L determines the macroscopic behavior of the systems.

We first discuss the relation between control parameters in two different systems, on which the diffusion
coefficient D̂L coincides to each other. Let p and p0 be control parameters in two different systems. Then, by
solving the following equation:

DL
SðpÞ

av0
¼

DL
Sðp
0Þ

av0
(20)

and using Eq. (7), one can find a relation between pn and p0n. As an example, we compare the hard-sphere fluid
with 15% polydispersity with the Lennard-Jones binary mixture, where the control parameter is f and 1=T ,
φ

1/
T

1

0

3
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4

[L] [S] [G]

5

0.4 0.5 0.550.45 0.6 0.65 0.7

Fig. 10. (Color online) A b2f iso-diffusive curve. The solid line indicates the solution of Eq. (20), the dotted line the linear line given by

Eq. (21), and the dashed line given by Eq. (22). The details are the same as in Fig. 3.
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M. Tokuyama et al. / Physica A 385 (2007) 439–455452
respectively. In Fig. 10, the b2f iso-diffusive curve is shown. In stages [S] and [G], 1=T obeys two different
linear equations given by

T�1 ¼ 21:86f� 10:82 for ½S�, ð21Þ

T�1 ¼ 26:27f� 13:43 for ½G�. ð22Þ

These linear relations suggest that in two stages [S] and [G] macroscopic collective motion dominates the
dynamics of the system. In any point on such a p� p0 curve, the dynamical behavior in two different systems
are expected to become identical. We next discuss this in three cases separately.

The first case is a mapping from the hard-sphere fluid with s ¼ 0 or s ¼ 0:06 to that with s ¼ 0:15. In Fig. 11,
M2ðtÞ is compared at two different values of D̂L; (L) D̂L ’ 0:0186 in a liquid state [L] where f ¼ 0:51 for
s ¼ 0:15 and f ¼ 0:503 for s ¼ 0, and (S) D̂L ’ 0:00284 in a supercooled state [S] where f ¼ 0:560 for s ¼ 0:15
and f ¼ 0:553 for s ¼ 0:06. At each value of D̂L, the simulation results are collapsed on the master curve given
by Eq. (4).

The second is a mapping from the confined Lennard-Jones binary mixture to the Lennard-Jones binary

mixture. In Fig. 12, M2ðtÞ is compared at two different values of D̂L; (L) D̂L ’ 5:9� 10�3 in a liquid state [L]
where b ¼ 1:2 ðT ¼ 0:8333Þ for the binary mixture and b ¼ 1:724 ðT ¼ 0:580Þ for the confined mixture, and

(S) D̂L ’ 1:023� 10�3 in a supercooled state [S] where b ¼ 1:7 ðT ¼ 0:588Þ for the mixture and b ¼ 2:325
ðT ¼ 0:43Þ for the confined mixture. In order to obtain M2ðtÞ, we have scaled it by a2 in the binary mixture and

by ‘20 in the confined mixture where ‘0 ¼ ð1:26=0:94Þa. This is reasonable since ‘ is scaled by ‘0 in the confined

mixture. At each value of D̂L, the simulation results are then collapsed on the master curve given by Eq. (4).
The third case is a mapping from the hard-sphere fluid with s ¼ 0:15 to the Lennard-Jones binary mixture.

In Fig. 13, M2ðtÞ is compared at two different values of D̂L; (L) D̂L ’ 0:0215 in a liquid state [L] where
f ¼ 0:51 for s ¼ 0:15 and b ¼ 0:8 ðT ¼ 1:25Þ, and (S) D̂L ’ 0:00136 in a supercooled state [S] where f ¼ 0:570
for s ¼ 0:15 and b ¼ 1:7 ðT ¼ 0:588Þ. At each value of D̂L, the simulation results are collapsed on the master
curve given by Eq. (4). As shown in Fig. 10, near the glass transition, both the systems are linearly related to
each other through T and f. This means that both in a supercooled state and in a glass state the macroscopic
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Fig. 13. A mapping of the hard-sphere fluid onto the Lennard-Jones binary mixture at different diffusion coefficient D̂L. The circles

indicate the results for the hard-sphere fluids with s ¼ 15% and the boxes for Lennard-Jones binary mixtures. In the binary mixture t0 is

replaced by T1=2t0. (L) D̂L ’ 2:159� 10�2 at � f ¼ 0:510 ðs ¼ 0:15Þ and & b ¼ 0:8 ðT ¼ 1:25Þ, and (S) D̂L ’ 1:181� 10�3 at � f ¼ 0:570
ðs ¼ 0:15Þ and & b ¼ 1:7 ðT ¼ 0:588Þ. The solid lines indicate the mean-field results given by Eq. (4).
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behavior with long space-time scales in different systems becomes identical, irrespective of the details in the
system. This situation is also seen in Fig. 4, where the mean-free path ‘̂ is the same for different systems. On
the b2f curve, therefore, the macroscopic spatial structures in different systems are also expected to be
identical. In order to see this, in Fig. 14 we show the static structure factor SðkÞ in both states, [L] and [S]. In
fact, the peak positions of the structure factors in both systems coincide with each other up to a third peak in
both states, [L] and [S], although their detailed shapes are different.

5. Conclusions

By performing extensive molecular-dynamics simulations on two different glass-forming systems, hard-
sphere fluids and Lennard-Jones binary mixtures, we have tested the prediction proposed by the MFT that one
system can be mapped onto another near their glass transitions. This was done by checking four categories
discussed in Section 1. The results are as follows:
(i)
 The mean-field equation (3) was shown to describe the simulation results very well, except in the glass
state where the systems are not in equilibrium yet.
(ii)
 The mean-free path ‘ was shown to be uniquely determined by DL
S and not to depend on the details of the

systems (see Fig. 4).

(iii)
 The long-time self-diffusion coefficient DL

SðpÞ was shown to obey the singular function given by Eq. (6)
partially. Then, the singular function was transformed into the non-singular function by using Eq. (7),
which can describe the simulation results very well for a whole range of p. It was also shown that if the
interactions are the same as each other, the coefficients a and � do not change, while the singular point pc

depends on the details of the system. This is shown in Table 1. Hence the different simulation results are
collapsed onto master curves (see Figs. 3(d) and 9).
(iv)
 At a given value of DL
SðpÞ the macroscopic physical quantities in any systems were shown to become identical

with each other. Hence the macroscopic dynamics in one system can be exactly mapped onto that in another
system (see Figs. 11–13). This suggests that the fragile systems can be exactly simulated by a simpler system.
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Table 1

a, �, and pc for different systems

System a � pc pb pg

HSS 4.86 1.0 0.5560 0.5440 0.5800

HSF(0.00) 4.86 1.0 0.5828 – –

HSF(0.06) 4.86 1.0 0.5843 0.5538 0.5905

HSF(0.15) 4.86 1.0 0.5923 0.5611 0.5981

LJBM 2.05 46.77 2.1285 1.4797 2.2851

CLJBM 2.05 46.77 2.9070 2.0091 2.9862

HSS indicates the hard-sphere suspension (experiment), HSFðsÞ the hard-sphere fluid with polydispersity s (simulation), LJBM the

Lennard-Jones binary mixture (simulation), and CLJBM the confined Lennard-Jones binary mixture (simulation), where p ¼ f for hard-

sphere systems and p ¼ 1=T for Lennard-Jones systems. pb and pg were obtained at D̂b ¼ 2:95� 10�3 and D̂g ¼ 9:16� 10�6, respectively.

M. Tokuyama et al. / Physica A 385 (2007) 439–455 455
As discussed in the previous paper Ref. [13], we were also convinced by the simulation results that the
dimensionless quantity D̂Lð¼ DL

S=d0Þ is a universal parameter to connect one glass-forming system with
another near the glass transition. Hence one can predict the dynamics in fragile systems by analyzing the
dynamics in simpler systems at a given value of D̂L. This situation also holds exactly for suspensions of
colloids. Finally, it would be valuable to know whether the present approach is applicable to more exotic
glasses or not. This will be discussed elsewhere.
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