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• Time-convolutionless mode-coupling theory is applied for colloidal suspensions.
• Nonlinear memory function consists of mechanical interactions and hydrodynamic interactions.
• Importance of long-range hydrodynamic interactions is emphasized.
• Theoretical prediction for a critical point is qualitatively consistent with that obtained from experimental data.
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a b s t r a c t

The time-convolutionless mode-coupling theory (TMCT) recently proposed for molecular
systems is employed to derive a TMCT equation for the collective-intermediate scattering
function in suspensions of hard-sphere colloids from the nonlinear Langevin equations
with the hydrodynamic interactions between colloids. The nonlinear memory function
contained in the TMCT equation consists of two types of interactions between colloids;
a mechanical interaction and a hydrodynamic interaction. It is predicted from the TMCT
equation how the hydrodynamic interactions can affect the ergodic to non-ergodic transi-
tion at a critical point. Then, such a hydrodynamic effect is tested by the experimental data
for suspensions of hard-sphere colloids with size polydispersities. Thus, it is emphasized
that the long-range hydrodynamic interactions are indispensable to explain the polydis-
persity dependence of the experimental critical points which is quite different from that of
simulations where only the mechanical interactions are taken into.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A large number of fundamental works on suspensions of colloids have been performed experimentally [1–18] and
theoretically [19–43]. Understanding their dynamics is one of important problems in soft matter science not only from an
academic point of view as in fundamental colloidal physics but also from a practical point of view as in chemical engineering
and biology. In most cases, however, the important effect of hydrodynamic interactions between colloids on their dynamics
near the glass transition is not fully recognized yet.

In this paper, we apply the time-convolutionless mode-coupling theory (TMCT) [44–47] for suspension of hard-sphere
colloids and derive the TMCT equation for the collective-intermediate scattering function, where the nonlinear memory
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function contains two different terms resulted frommechanical interactions and hydrodynamic interactions. We then show
how the critical point (or kinetic glass transition point) is determined by two different interactions. In order to check
the important role of the hydrodynamic interactions, we discuss the critical volume fraction φc(σ ) for the suspension of
polydisperse colloids, where σ is a size polydispersity. Then, the present theory predicts the following three cases for φc :⎧⎪⎨⎪⎩

(i) φc(σ ) = φh(σ ) < φ
(m)
c (σ ), for 0 ≤ σ < σ0,

(ii) φc(σ ) = φh(σ ) = φ
(m)
c (σ ), for σ = σ0,

(iii) φc(σ ) = φh(σ ) > φ
(m)
c (σ ), for σ > σ0.

(1)

where σ0 is a constant to be determined. Here φ(m)
c (σ ) is a critical volume fraction obtained only from the mechanical

interactions and is found from all the simulations, while φh(σ ) is a critical volume fraction obtained from the correlation
effect due to the long-range hydrodynamic interactions among colloids and is given by

φh(σ ) = φh(0)(1 + 3σ 2) (2)

with the hydrodynamic critical point at σ = 0 [20,21]

φh(0) = (4/3)3/(7 ln 3 − 8 ln 2 + 2) ≃ 0.571847 · · · , (3)

where in order to obtain Eq. (2), the Gaussian distribution was assumed for particle radius [1]. In case (i), the mechanical
interactions are enhanced by the hydrodynamic interactions, leading to φc(σ ) < φ

(m)
c (σ ). In case (ii), both interactions

are equally important, leading to φc(σ ) = φ
(m)
c (σ ) = φh(σ ). In case (iii), the mechanical interactions are reduced by the

hydrodynamic interactions, leading to φc(σ ) > φ
(m)
c (σ ). In cases (i) and (iii), the hydrodynamic correlation effects dominate

the system, leading to φc(σ ) = φh(σ ). Herewe note that only in case (ii) the simulation results can describe the experimental
data. Since the TMCT equation with the hydrodynamic memory function cannot be solved analytically nor numerically at
the present moment, we just demonstrate from a phenomenological point of view based on the theoretical prediction how
one can qualitatively explain the three cases consistently. In order to check the existence of those three cases, therefore,
we investigate not only the polydispersity dependence of the critical point obtained from the experiments for suspensions
of polydisperse hard-sphere colloids [4,5,7–11] but also that of the simulations [28–36]. Then, we show on a schematic
representation of the phase diagram in volume fraction-polydispersity plane that the polydispersity dependence of the
experimental critical point φc(σ ) coincides with Eq. (2) within error and is quite different from that of the simulations given
by φ(m)

c (σ ). Thus, we emphasize that the hydrodynamic interactions are indispensable to explain the experimental results
for the suspensions of polydisperse hard-sphere colloids.

We begin in Section 2 by briefly explaining the theoretical background of TMCT. Then, we derive the TMCT equation
for colloidal suspensions, starting from the nonlinear Markov Langevin equations with the friction coefficient resulted from
the long-range hydrodynamic interactions between colloids. In Section 3, we investigate the nonlinear memory function in
TMCT equation, which contains two different correlation effects; one due to the mechanical interactions and the other due
to the hydrodynamic interactions. In Section 4, we discuss the ergodic to non-ergodic transition at a critical point and derive
a nonlinear equation to find a Debye–Waller factor. In Section 5, we propose an asymptotic form of the friction coefficient
to obtain three cases qualitatively. In Section 6, we investigate the critical volume fractions obtained from the experiments
and the simulations for the suspensions of polydisperse hard-sphere colloids. Thus, we show the phase diagram in volume
fraction-polydispersity plane and discuss how the hydrodynamic interactions are indispensable to explain such a phase
diagram qualitatively. We conclude in Section 7 with a summary.

2. TMCT for colloidal suspensions

In this section, we show how to apply the same TMCT formulation [44] as that employed in the molecular systems for
colloidal suspensions. We consider the three-dimensional system which contains N spherical colloids with mass mi and
radius ai of particle i suspended in an equilibrium fluid with a viscosity η in the total volume V at temperature T . Before we
go into the details, we briefly review the theoretical background.

2.1. Theoretical background of TMCT

In this subsection, we briefly summarize the macroscopic equations in the suspensions which are derived from first
principles by using a new formulation based on TMCT [44–47]. The outline of TMCT is as follows. As is shown in Fig. 1,
the basic equations discussed in the present paper can be classified into four stages, [N], [L], [K], and [H], depending on a
space–time scale. In amicroscopic stage [N], the position X j(t) and themomentum P j(t) of jth particle at time t are described
by the Newton (or Heisenberg) equations. In a Langevin stage [L], a nonlinear Langevin equation for the momentum P j(t)
is derived from the Newton equations. In a kinetic stage [K], the relevant variables are given by the current densities and
the number densities. Linear non-Markov Langevin type equations for the current densities are derived from the Langevin
equation by using theMori projection-operator method [48] (see a dashed arrow (M) in Fig. 1), where thememory terms are
convolution in time and are written in terms of correlation function of the fluctuating forces. Linear non-Markov stochastic
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Fig. 1. (Color online) Classification of the basic equations discussed in the present paper into four stages, [N], [L], [K], and [H], depending on a space–time
scale. Here ℓi and τi indicate the characteristic length and time, respectively.

diffusion equations for the number densities are also derived from the Langevin equation by employing the Tokuyama–Mori
projection-operator method [49,50] (see a dotted arrow (T) in Fig. 1), where the memory terms are convolutionless in time
and are written in terms of correlation function of the fluctuating current. Then, those coupled equations are used to obtain
closed nonlinear non-Markov second-order differential equations for the average number densities (see a bold arrow in
Fig. 1). This is a TMCT equation not only to describe the dynamics of supercooled liquids but also to find a critical point at
which an ergodic to non-ergodic transition occurs. In a hydrodynamic stage [H], the Markov equations for number densities
are derived (see a dot-dashed arrow in Fig. 1). As discussed in the previous papers [44–47], it is important to employ two types
of projection-operator methods to derive the basic equations for different relevant variables. In fact, it is indispensable to
use the time-convolutionless formalism for the number densities to recover the cumulant expansion proposed by Kubo [51].
Thus, TMCT enables us to calculate each cumulant-expansion term, such as amean-square displacement and a non-Gaussian
parameter, consistently from first principles.

2.2. A Langevin equation in stage [L]

Let {X(t), P(t)} denote a set of variables, where X i(t) and P i(t) are the position vector and the momentum of the ith
colloidal particle, respectively. As shown in the previous papers [19–21], there are three kinds of interactions acting on a
colloidal particle i on a time scale of the Brownian relaxation time tB(= mi/ζ0i), where ζ0i = 6πηai. The first is a random
force R i(t) which is exerted by the fluctuating fluid on a colloid i, leading to Brownian motion. The second is hydrodynamic
interactions between colloids i and j through the friction tensor ζij. The last is mechanical interactions between colloids i
and j given by F ij(t), a force acting on the ith particle from the jth particle. Then, the colloidal particle is described by the
nonlinear Markov Langevin equation, which can be derived from the Newton equation as [20,21]

dP i(t)
dt

= −

N∑
j=1

ζij(X(t))
mj

· P j(t) +

N∑
j̸=i

F ij(t) + R i(t), (4)

where R i(t) obeys a Gaussian, Markov process and satisfies the fluctuation–dissipation relation

⟨R i(t)R j(t ′); x, p⟩ = 2kBTζij(x)δ(t − t ′), (5)

and the orthogonality condition ⟨R i(t); x, p⟩ = 0. Here the brackets ⟨· · · ; x, p⟩ denote the conditional average over an
equilibrium ensemble given by ⟨· · · ; x, p⟩ = ⟨· · ·Πxp(0)⟩/⟨Πxp(0)⟩, where Πxp(t) is a generating function for {X(t), P(t)}
to have a set of variables {x, p} and is given byΠxp(t) =

∏N
i=1 δ(X i(t)− xi)δ(P i(t)− pi). The first term of Eq. (4) indicates the

friction force. Here the friction tensor ζij(X(t)) depends on time only through X(t) and is given by

ζij(x) = ζ0i
[
(1 + G(x))−1]

ij , (6)
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where the tensor G ij(x)(i ̸= j) indicates the hydrodynamic interactions between colloids i and j, and G ii = 0. Up to order
(ai/|xij|)4, the tensorG ij can bewritten in terms of theOseen tensorGO

ij and the dipole tensorGD
ij asG ij = GO

ij+GD
ij with [19–21]

GO
ij =

3
4

ai
|xij|

(1 + x̂ijx̂ij),

GD
ij =

1
4

ai(a2i + a2j )

|xij|3
(1 − 3x̂ijx̂ij), (7)

where x̂ij = xij/|xij|, and xij = xi −xj. Here we note that the explicit time dependence of ζ0i caused by the back-flow effect as
a long-time tail [52] is ignored for simplicity since it does not play any role in a diffusion process of interest. In the following,
we deal with only identical particles with massm and radius a for simplicity. Then, the control parameter is given by λ, such
as a volume fraction φ(= 4πρa3/3) in spherical colloids, inverse temperature 1/T in Lennard-Jones colloids, etc., where
ρ(= N/V ) is the number density.

Eq. (4) is a starting equation to derive stochastic equations in stages [K] and [H]. As discussed in the previous papers [44–
47], in the molecular systems one can easily derive such equations by employing the projection operator method [48–50].
This is because the position vector X i(t) and the momentum P i(t) are described by the Heisenberg equations with the
Liouville operator L. On the other hand, in the colloidal suspensions P i(t) obeys the Langevin equation (4). In order to directly
apply the same projection operator method as that used in the molecular systems to the colloidal systems, therefore, it is
convenient to start from a stochastic Fokker–Planck equation for Πxp(t) as discussed in the previous papers [53,54]. Let
Aq(X(t), P(t)) be an arbitrary function of {X(t), P(t)}. Then, one can write it as Aq(X(t), P(t)) =

∫
dx

∫
dpAq(x, p)Πxp(t). As

is shown in Appendix, therefore, the function Aq(x, p, t) can be described by a new equation

∂

∂t
Aq(x, p, t) = Λ(x, p)Aq(x, p, t) (8)

with the operator

Λ(x, p) =

N∑
i=1

⎡⎣pi

m
·
∂

∂xi
+

∂

∂pi
·

N∑
j̸=i

F ij

⎤⎦
+

N∑
i=1

N∑
j=1

[
−

1
m

pi + kBT
∂

∂pi

]
· ζij ·

∂

∂pj
. (9)

This equation plays a role of the Heisenberg equation in the colloidal systems. In fact, Eq. (8) is formally solve to give
Aq(x, p, t) = exp[tΛ(x, p)]Aq(x, p). Thus, it turns out that one can directly apply the same TMCT formulation as that discussed
in molecular systems to colloidal suspensions, except that the operator iL is now replaced byΛ. We next discuss this briefly.

2.3. An equation for f (q, t) in stage [K]

We first discuss the macroscopic equation in a stage [K]. In this paper, we focus only on the dynamics of collective-
intermediate scattering function given by

f (q, t) = ⟨ρ(q,X(t))ρ(q,X(0))∗⟩/S(q) (10)

with the colloid density fluctuation

ρ(q,X(t)) =
1

N1/2

[ N∑
j=1

eiq·X j(t) − Nδq,0

]
, (11)

where S(q)(= ⟨|ρ(q,X(0))|2⟩) is a static structure factor and q = |q|. Since the density fluctuation is a macroscopic quantity,
we set q as 0 < q ≤ qc , where qc is a wave number cutoff to be determined. As is shown in Eq. (A.8), one can then write
f (q, t) as

f (q, t) = ⟨ρ(q, x(t))ρ(q, x(0))∗⟩/S(q), (12)

where ρ(q, x(t)) = exp[tΛ(x, p)]ρ(q, x). By simply writing ρ(q, x(t)) as ρ(q, t), the starting equation is now given by

∂

∂t
ρ(q, t) = Λ(x, p)ρ(q, t). (13)

Similarly to the molecular systems, we also introduce the projection operator ℘ by

℘A(t) =
⟨A(t)ρ(q, 0)∗⟩

⟨ρ(q, 0)ρ(q, 0)∗⟩
ρ(q, 0). (14)
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By using the time-convolutionless projection-operator method (T) [49,50], one can then exactly transform Eq. (13) into a
time-convolutionless linear stochastic diffusion equation for ρ(q, t)

∂

∂t
ρ(q, t) = −q2Dc(q, t)ρ(q, t) + iqg(q, t) (15)

with the time- and q-dependent collective-diffusion coefficient

Dc(q, t) =

∫ t

0
ψ(q, s)ds, (16)

where the memory function ψ(q, t) is given by

ψ(q, t) = ⟨g(q, t)g(q, 0)∗⟩/⟨ρ(q, t)ρ(q, 0)∗⟩. (17)

Here g(q, t) is a fluctuating current given by

g(q, t) = etQΛ[1 − Q {1 − e−tΛetQΛ}]
−1j(q, 0) (18)

with the current density fluctuation

j(q, 0) = N−1/2
N∑
j=1

q̂ ·
pj

m
eiq·xj , (19)

where Q = 1 − ℘ and q̂ = q/|q|. The fluctuating current g(q, t) satisfies the orthogonality condition given by
⟨g(q, t)ρ(q, 0)∗⟩ = 0. Here we have ⟨|g(q, 0)|2⟩ = v2th(= kBT/m), ψ(q, 0) = v2th/S(q), and Dc(q, 0) = 0. Use of Eqs. (12)
and (15) then leads to a time-convolutionless diffusion equation for f (q, t)

∂

∂t
f (q, t) = −q2Dc(q, t)f (q, t). (20)

This equation is easily solved to find a formal solution

f (q, t) = exp[−K (q, t)] (21)

with the cumulant function

K (q, t) = q2
∫ t

0
Dc(q, s)ds = q2

∫ t

0
(t − s)ψ(q, s)ds, (22)

where K (q, 0) = dK (q, t)/dt|t=0= 0.

2.4. An equation for ψ(q, t) in stage [K]

We next derive the equation for ψ(q, t) in a stage [K]. As discussed in Refs. [44,47], one can write a time derivative of Eq.
(18) as

∂

∂t
g(q, t) = QΛg(q, t) − iqψ(q, t)Qρ(q, t) ≃ QΛg(q, t). (23)

In order to derive Eq. (23), we have used the fact that ψ(q, t)ρ(q, t) ≃ ψ(q, t)ρ(q, 0) since ψ(q, t) is a rapidly-varying
function in time, while ρ(q, t) is a slowly-varying function in time [44]. Because of the same reason, one can also write
Eq. (17) approximately as

ψ(q, t) ≃ ⟨g(q, t)g(q, 0)∗⟩/S(q). (24)

Here we note that although a precise formulation without this approximation has been recently done in Ref. [47], we can
safely use Eq. (24) in the following because we are interested only in the long-time dynamics near the critical point.

In order to derive a linear equation for ψ(q, t) from Eq. (23), we also introduce the projection operator ℘ ′ by

℘ ′A(t) =
⟨A(t)g(q, 0)∗⟩

⟨g(q, 0)g(q, 0)∗⟩
g(q, 0). (25)

Similarly to the molecular systems, one can use the time-convolution projection-operator method [48] to derive a linear
Langevin type equation for g(q, t). Then, one can exactly transform Eq. (23) into

∂

∂t
g(q, t) = iωg(q, t) −

∫ t

0
∆ϕ(q, s)g(q, t − s)ds + ξ (q, t) (26)

with the drift term

iω = ⟨[QΛg(q, 0)]g(q, 0)∗⟩/v2th = −ζ (q)/m, (27)
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and the nonlinear memory term

∆ϕ(q, t) = −⟨[QΛξ (q, t)]g(q, 0)∗⟩/v2th = ⟨ξ (q, t)ξ (q, 0)∗⟩/v2th, (28)

where the friction coefficient ζ (q) is given by

ζ (q) =
1
N

N∑
i=1

N∑
j=1

⟨q̂ · ζij · q̂e
iq·xij⟩. (29)

Here ξ (q, t) is the fluctuating force given by

ξ (q, t) = etQ
′QΛQ ′QΛg(q, 0), (30)

and satisfies the orthogonality conditions ⟨ξ (q, t)g(q, 0)∗⟩ = ⟨ξ (q, t)ρ(q, 0)∗⟩ = 0, where Q ′
= 1 − ℘ ′. Use of Eqs. (24) and

(26) then leads to

∂

∂t
ψ(q, t) = −

ζ (q)
m
ψ(q, t) −

∫ t

0
∆ϕ(q, s)ψ(q, t − s)ds. (31)

This is a linear non-Markov equation for ψ(q, t) whose memory function is convolution in time.

2.5. A second-order differential equation for K (q, t) in stage [K]

In order to find f (q, t), one has to solve the coupled equations given by Eqs. (20) and (31) consistently. However, one
can transform those equations into a single equation for K (q, t) [45]. In fact, this is easily done by introducing the Laplace
transform of K (q, t) by K [q, z] =

∫
∞

0 e−ztK (q, t)dt . By taking the Laplace transform of Eq. (31) and using the relation
ψ[q, z] = z2K [q, z], we thus obtain the second-order differential equation for K (q, t)

∂2K (q, t)
∂t2

=
q2v2th
S(q)

−
ζ (q)
m

∂K (q, t)
∂t

−

∫ t

0
∆ϕ(q, t − s)

∂K (q, s)
∂s

ds. (32)

This equation has exactly the same form as that obtained in the molecular systems [45], except that the damping constant
is now replaced by ζ (q)/m. On a time scale of a structural relaxation time tD(= a2/D0) much longer than tB, one can safely
neglect the second derivative term in Eq. (32) and finally obtain

∂K (q, t)
∂t

= q2DS
c (q) −

m
ζ (q)

∫ t

0
∆ϕ(q, t − s)

∂K (q, s)
∂s

ds, (33)

whereDS
c (q)(= D0ζ0/S(q)ζ (q)) is the q-dependent short-time collective diffusion coefficient resulted from the hydrodynamic

interactions, D0(= kBT/ζ0) being a single particle diffusion constant. This is the TMCT equation to discuss the dynamics of
colloidal suspensions on a time scale of tD. Here we note that all the assumptions and formulations used here are the same
as those employed in TMCT in the molecular systems. Only the difference between the molecular systems and colloidal
suspensions appears in the nonlinear memory function∆ϕ(q, t). We next discuss this.

2.6. A Markov equation for K (q, t) in stage [H]

On a time scale much longer than tD, Eq. (33) reduces to a Markov equation

∂K (q, t)
∂t

≃ q2DS
c (q) −

m
ζ (q)

∫
∞

0
∆ϕ(q, s)ds

∂K (q, t)
∂t

= q2DL
c(q) (34)

with the wavevector-dependent long-time collective diffusion coefficient DL
c(q)

DL
c(q) = Dc(q,∞) =

DS
c (q)

1 + S(q)DS
c (q)

∫
∞

0 ds∆ϕ(q, s)/v2th
. (35)

Then, this leads to

K (q, t) = q2DL
c(q)t. (36)

3. Nonlinear memory function

In colloidal suspensions, the fluctuating force ξ (q, t) consists of two types of interactions. One is a mechanical interaction
between particles i and j due to the force F ij and the other is a hydrodynamic interaction between i and j through the friction
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force−ζij·pj/m. In order to take into account the nonlinear effects fromboth interactions,we now introduce a newprojection
operator ℘2 by

℘2A =

∑
|k|≤qc

[
⟨Aρ(k, 0)∗ρ(q − k, 0)∗⟩

2S(k)S(|q − k|)
ρ(k, 0)ρ(q − k, 0)

+
⟨Aj(k, 0)∗ρ(q − k, 0)∗⟩

v2thS(|q − k|)
j(k, 0)ρ(q − k, 0)

+
⟨Aε(k, 0)∗ρ(q − k, 0)∗⟩

2v4thS(|q − k|)
ε(k, 0)ρ(q − k, 0)

]
(37)

with the kinetic energy density fluctuation

ε(k, 0) = N−1/2
N∑
j=1

[(
k̂ ·

pj

m

)2
− v2th

]
eik·xj , (38)

where ℘2(1 − ℘2)A = 0 because of the orthogonality conditions

⟨j(k, 0)ρ(k, 0)∗⟩ = ⟨ε(k, 0)ρ(k, 0)∗⟩ = ⟨j(k, 0)ε(k, 0)∗⟩ = 0. (39)

The first termof Eq. (37) is the samenonlinear termas that discussed in themode-coupling theory (MCT) [55]. The second and
third terms are new nonlinear terms, which are important to take into account the correlation effects due to the long-range
hydrodynamic interactions. By using ℘2, one can formally split the fluctuating force ξ (q, t) into two parts as

ξ (q, t) = etQ
′QΛ℘2[Q ′QΛj(q)] + etQ

′QΛQ2[Q ′QΛj(q)], (40)

whereQ2 = 1−℘2. Since the fluctuating force ξ (q, t) does not contain the randommotionwhich has been already extracted
in Eq. (4) as the friction term, the second term of Eq. (40) contains the higher than third-order terms in ρ(k, t), which are of
order N−1. Hence one can neglect it safely in the thermodynamic limit N → ∞ and V → ∞ with ρ being kept constant. By
using Eq. (37), one can then write ξ (q, t) as

ξ (q, t) ≃ etQ
′QΛ℘2[Q ′QΛj(q)]

=
1

N1/2

∑
|k|≤qc

[
i
v2th

2
ρv(q, k)ρ̃(k, t)ρ̃(q − k, t)

+
v2th

kD0
u(q, k)j̃(k, t)ρ̃(q − k, t) + iw(q, k)ε̃(k, t)ρ̃(q − k, t)

]
(41)

with the vertexes

v(q, k) = q̂ · kc(k) + q̂ · (q − k)c(|q − k|), (42)
u(q, k) = q̂ · [ζ (q)1 − ζ(q, k)] · k/ζ0, (43)
w(q, k) = q̂ · k, (44)

where Ã(k, t) = etQ
′QΛA(k, 0), and ρc(k) = 1 − 1/S(k). Here ζ(q, k) is a friction tensor given by

ζ(q, k) =

N∑
i,j

⟨ζije
iq·xi−ik·xjρ(q − k)∗⟩
N1/2S(|q − k|)

, (45)

where we have approximated the time evolution of Ã(k, t) as Ã(k, t) ≃ A(k, t) [44,55]. By using the factorization
approximation for ⟨ξ (q, t)ξ (q, 0)∗⟩, from Eqs. (28), (39) and (41), one can thuswrite the nonlinearmemory function∆ϕ(q, t)
as

∆ϕ(q, t) = ∆ϕm(q, t) +∆ϕh(q, t) (46)

with the mechanical memory function

∆ϕm(q, t) =
ρv2th

2

∫
<

dk
(2π )3

v(q, k)2S(k)S(|q − k|)f (k, t)f (|q − k|, t), (47)

and the hydrodynamic memory function

∆ϕh(q, t) =
v2th

ρ

∫
<

dk
(2π )3

[
w(q, k)2 − χ (q, k, t)2

]
S(k)S(|q − k|)f (k, t)f (|q − k|, t), (48)
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where the friction term χ (q, k, t) is given by

χ (q, k, t) = u(q, k)
Dc(k, t)

D0
. (49)

Here
∫
<

denotes the sum over wave vectors k with |k| ≤ qc . The memory function ∆ϕm(q, t) has the same form as
that originally obtained in molecular systems [44,55]. The memory function ∆ϕh(q, t) is a new term resulted from the
hydrodynamic effects, which consists of the coupling between the current densities and also that between the energy
densities. In order to find the asymptotic formof ε(k, t) on a time scale of order τD, we have used the same formulation as that
employed in the derivation of Eq. (4.2c) for the average number density in Ref. [21] and then obtained ε(k, t) ≃ v2thρ(k, t)
from Eq. (3.49c) for the density fluctuation in Ref. [21]. Finally, we also note that the term which contains the short-time
function ψ(k, t) is neglected in Eq. (48) because it reduces to zero on a time scale of tD.

4. Ergodic to non-ergodic transition

The most important prediction of MCT [55] is an existence of ergodic to non-ergodic transition at a critical point λc , such
as a critical volume fraction φc , above which the long-time solution reduces to a non-zero value, the so-called Debye–Waller
factor f (q). This prediction has been also shown to hold for TMCT [44–47,56–58]. Taking the Laplace transform of Eq. (32),
one can obtain

f (q) = lim
t→∞

f (q, t) =

{
0, for λ < λc,

exp[−K (q)], for λ ≥ λc
(50)

with the long-time cumulant function

K (q) = lim
z→0

zK [q, z] = 1/F (q), (51)

where the long-time limit of the memory function F (q) is given by

F (q) = lim
z→0

z∆ϕ[q, z]S(q)
q2v2th

= Fm(q) + Fh(q). (52)

Here the mechanical memory term Fm(q) and the hydrodynamic memory term Fh(q) are given by

Fm(q) =
ρ

2q2

∫
<

dk
(2π )3

v(q, k)2S(q)S(k)S(|q − k|)f (k)f (|q − k|), (53)

Fh(q) =
1
ρq2

∫
<

dk
(2π )3

Ω(q, k)S(q)S(k)S(|q − k|)f (k)f (|q − k|), (54)

where the hydrodynamic vertexΩ is given by

Ω(q, k) = w(q, k)2 − χ (q, k,∞)2. (55)

From Eqs. (50) and (51), one obtains

f (q) = exp[−1/F (q)], or K (q)F (q) = 1. (56)

This is an equation to find the Debye–Waller factor f (q) or the nonergodicity cumulant K (q). Since F (q) contains the
nonlinear terms exp[−K (k) − K (|q − k|)], the function K (q) is considered to be a kind of the so-called Lambert W-function,
which ensures the existence of a critical point mathematically. We should mention here that the critical point λc is just a
mathematical singular point but not the thermodynamic glass transition point λg , where λc > λg . Here we note that Eq. (56)
has the same form as that obtained in the molecular systems, except that the memory function contains the hydrodynamic
term. If the hydrodynamic term is neglected, therefore, the critical point obtained in suspensions of hard spheres coincides
with that in the hard-sphere fluids. This has been already checked between the Brownian-dynamics simulations and the
molecular-dynamics simulations [29,30].

The second important prediction of MCT is that there exists a two-step relaxation process in a β stage. As demonstrated
in Refs. [45,56], one can directly apply exactly the same formulation as that employed by MCT to TMCT near λc . Near λc ,
therefore, one can write the α-relaxation time τα and the β-relaxation time τβ as

τα ∝ (1 − λ/λc)−γ , (57)

τβ ∝ (1 − λ/λc)−γβ , (58)

where γ and γβ are time exponents to be determined. In stage [H], we obtain

K (q, t) ≃

{
q2DL

c(q)t, for λ < λc,

K (q), for λ ≥ λc .
(59)
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Since τα ∝ 1/DL
c , one can also write DL

c(q) near λc as

DL
c(q) ∝ (1 − λ/λc)γ . (60)

From Eq. (35), the integral term of∆ϕ(q, s) is thus expected to be a singular function proportional to τα . Here we note that
the self-diffusion coefficient DL

s also obeys the same power law as that of Eq. (60), except that γ is now replaced by γs.
If Fh(q) is neglected, Eq. (56) is exactly the same equation as that in the molecular systems [44–47] and leads to a

mechanical critical point λ(m)
c . Depending on a sign of Fh(q), therefore, we may have the following three cases for the critical

point λc . The first is a case (i) where Fh(q) > 0. From Eq. (56), one thus finds that λc < λ
(m)
c since themechanical interactions

are enhanced by the long-range hydrodynamic interactions. The second is a case (ii) where Fh(q) = 0. Then, one finds that
λc = λ

(m)
c . This suggests that the dynamics in the experiments can be described by the Brownian-dynamics (BD) simulations.

The last is a case (iii) where Fh(q) < 0. Then, one finds that λc > λ
(m)
c since the mechanical interactions are reduced by

the long-range hydrodynamic interactions. In the next section, we discuss whether those three cases are possible in the
experiments for suspensions of hard-sphere colloids or not.

5. Hydrodynamic interactions in suspensions of polydisperse hard spheres

In order to discuss how the hydrodynamic interactions between particles play an important role near the critical point, we
consider the suspension of hard spheres with size polydispersity σ , where the control parameter λ is given by the volume
fraction φ and the mechanical interactions are given by the direct interactions between colloids. We first mention that
because of the vertex u(q, k), it is not easy to find the critical volume fraction φc(σ ) by solving Eq. (56) even numerically. If
the asymptotic form of u is given, however, φc(σ ) is easily calculated at σ = 0 from Eq. (56) by using the Percus–Yevick (PY)
static structure factor [59] (see Table 1). We next discuss such an asymptotic form from a phenomenological point of view
and then show how one can qualitatively predict three cases discussed before.

5.1. Hydrodynamic singular point

In this subsection, we first discuss the hydrodynamic critical point φh(σ ), which is obtained from the many-body
correlation effects due to the long-range hydrodynamic interactions GO

ij (i ̸= j). The theoretical calculation of φh(σ ) has been
done only for monodisperse hard spheres, where σ = 0. As shown in Refs. [20,21], the long-time self-diffusion coefficient
DL(H)
s (φ) is calculated as

DL(H)
s (φ) =

DS
s (φ)(1 − 9φ/32)

1 +
DS
s (φ)
D0

φ/φh(0)
[1−φ/φh(0)]2

, (61)

where the hydrodynamic critical point φh(0) is given by

φh(0) =
(4/3)3

7 ln(3) − 8 ln(2) + 2
≃ 0.571847 · · · . (62)

Here the factor 9φ/32 results from the coupling effects between the direct interactions and the short-range hydrodynamic
interactions. The coefficient DS

s (φ) is the short-time self-diffusion coefficient given by

DS
s (φ) =

D0

1 + H(φ)
, (63)

where H(φ) is the term resulted from the short-time hydrodynamic interactions and is given by [20]

H(φ) = q̂ · ⟨ζii/ζ0⟩ · q̂ − 1, (64)

≃
9φ/4

1 − (9φ/8)1/2
−

11φ/16
1 + 11φ/8

−
(9φ/8)1/2(11φ/16)(2 + 11φ/16)

(1 + 11φ/16)(1 − (9φ/8)1/2 + 11φ/16)
. (65)

The first term of Eq. (65) comes from the long-range hydrodynamic interactions, the second term from the short-range
hydrodynamic interactions, and the third term from their couplings. Here we note that DL(H)

s is in general different from the
long-time self-diffusion coefficient DL

s because the singular point of the former is determined only by the hydrodynamic
interaction, while that of the latter by both the mechanical interaction and the hydrodynamic interaction. Similarly to
Eq. (61), the friction tensor ζij(i ̸= j) is also calculated for a self-diffusion in monodisperse hard spheres as∑

i(̸=j)

⟨ζij⟩/ζ0 ≃
φ/φh(0)

[1 − φ/φh(0)]2
1. (66)

Here we note that the singular exponent and the singular point of Eq. (66) are the same as those of Eq. (61).
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In order to extend Eqs. (61) and (66) to polydisperse hard spheres, one may replace a by a + δa in those equations and
average them over the Gaussian distribution function P(δa) = exp[−(δa)2/(2σ 2a2)]/((2π )1/2σa) [1], where σ is a scaled
standard deviation given by σ = ⟨(δa)2⟩1/2/a and is assumed to be small. Up to lowest order in σ , one can thus obtain

DL(H)
s (φ) ∝ D0

[1 − φ/φh(σ )]2

φ/φh(σ )
, (67)∑

i(̸=j)

⟨ζij⟩ ≃ ζ0
φ/φh(σ )

[1 − φ/φh(σ )]2
1, (68)

where φh(σ ) is given by

φh(σ ) = (1 + 3σ 2)φh(0). (69)

Similarly to Eq. (43), one can also find the vertex us for a self-diffusion as

us(q, k) = −q̂ ·

∑
i(̸=j)

⟨ζij/ζ0e
ik·xij⟩ · k

≃ −
φ/φh(σ )

[1 − φ/φh(σ )]2
q̂ · k + O(k2). (70)

Thus, the vertex us turns out to be a singular function with the hydrodynamic critical point φh(σ ).

5.2. Asymptotic form of hydrodynamic vertexΩ(q, k)

Since the vertex u(q, k) contains the friction coefficient ζ (q, k) given by Eq. (45), it is not easy to obtain its singular
function analytically. Hencewe only discuss its asymptotic formhere. Based on the discussion in Section 5.1, we now assume
that the singular exponent of u(q, k) is the same as that of DL

c(q) given by Eq. (60). Since the singular point of u is the same
as that of us, one may assume the asymptotic form of u as

u(q, k) ≃ −
h(σ )

[1 − φ/φh(σ )]γ
q̂ · k, (71)

where h(σ ) is a function of σ to be determined. Use of Eqs. (49), (60) and (71) then leads to

χ (q, k,∞;φ) ≃

{
−h(σ )

[
1−φ/φc
1−φ/φh

]γ
q̂ · k, for φ ≤ φc,

0, for φ > φc .
(72)

At the critical point φ = φc , therefore, we obtain

χ (q, k,∞;φc) =

{
−h(σ )q̂ · k, for φc = φh,

0, for φc ̸= φh.
(73)

From Eq. (73), one can now explain the three cases discussed before consistently for hard-sphere colloids. We first mention
that the case χ (q, k,∞;φc) = 0 for φc ̸= φh does not exist because the memory function with vertex w(q, k) leads to a
unphysical critical volume fraction much lower than φh. When φc = φh, therefore, we find

Ω(q, k, σ ;φc) = [1 − h(σ )2]w(q, k, σ ;φc)2. (74)

Then, there exist three cases; (i) Ω > 0 (or h < 1), (ii) Ω = 0 (or h = 1), and (iii) Ω < 0 (or h > 1). When σ = 0, h(0)
can be determined from Eqs. (56) and (74) by using the PY static structure factor under the condition φc(0) = φh(0). In fact,
one can find h(0) ≃ 0.9934 at qca = 14.5. Since h(0) < 1, σ = 0 belongs to case (i). As σ increases, therefore, h(σ ) should
increase and satisfy h(σ0) = 1, where σ0 is a non-zero value to be determined. Depending on the value of σ , we thus obtain
the following three cases:⎧⎪⎨⎪⎩

(i) φc(σ ) = φh(σ ) < φ
(m)
c (σ ), for 0 ≤ σ < σ0,

(ii) φc(σ ) = φh(σ ) = φ
(m)
c (σ ), for σ = σ0,

(iii) φc(σ ) = φh(σ ) > φ
(m)
c (σ ), for σ > σ0.

(75)

Since h ≤ 1 in cases (i) and (ii), the condition F (q) > 0 holds for all values of q. In case (iii), h(σ ) should also be a function of
σ to satisfy such a condition.

6. Critical volume fraction for polydisperse hard-sphere colloids

In this section, we investigate the critical point obtained from the simulations and the experiments on suspensions of
polydisperse hard-sphere colloids and also from the TMCT solutions for PYmodel. Then, we check whether there exist three
cases discussed above or not. We note here that although the crystallization occurs above the melting volume fraction for
σ < 0.06, one can safely find the critical volume fraction itself by using the power laws.
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Table 1
φc (σ ); (Exp.) experiments for hard spheres, (Sim.) simulations for hard spheres, and (TMCT) TMCT solution for PY model; (H0) without and (H) with
hydrodynamic interactions, where σ0 ≃ 0.09545.
σ (Exp.) φc (σ ) (TMCT)

(Sim.)

0.00 – 0.582 [28–30] (H0) 0.5817 [57]
(H) 0.5718 (i)

0.04 (i) 0.575 [4,5] – –
0.05 (i) 0.577 ± 0.005 [6] – –
0.06 – 0.5845 [31] –
0.069 (i) 0.580 [7,8] – –
0.07 – 0.5854 [33] –
0.08 (i) 0.583 [9] – –
0.085 – 0.5865 [33] –
σ0 (ii) –
0.10 (iii) 0.590 ± 0.005 [10] 0.5874 [35,36] –
0.15 – 0.5919 [32] –
0.23 – 0.598 [34] –

6.1. Critical point obtained from simulations

By using the power laws given by Eqs. (57) and (60), the critical pointφc(σ ) has been found from the simulation results not
only for the long-time self-diffusion coefficientDL

s at σ = 0.0, 0.06, 0.15 [28–32], σ = 0.07 and 0.085 [33], and σ = 0.23 [34]
but also for the α-relaxation time τα of the self-intermediate scattering function at σ = 0.10 [35,36]. The critical points at
different polydispersities are listed in Table 1.

6.2. Critical point obtained from TMCT equation

In this subsection, we briefly refer to the critical point φc(0) obtained by solving Eq. (56) numerically at σ = 0 under the
PY static structure factor. When Fh(q) = 0, the critical point has been found as φ(m)

c (0) ≃ 0.5817 [57], which coincides with
that of the simulations [28–30]. As discussed in Section 5.2, when Fh(q) ̸= 0, the critical point is found as φc(0) = φh(0) at
h(0) ≃ 0.9934.

6.3. Critical point obtained from experiments

By using the power laws given by Eqs. (57) and (60), the critical point φc(σ ) has been reported from the following five
different experiments for suspensions of hard-sphere colloids at different polydispersities. The first experiment has been
done by van Megen et al. [4,5] at σ ≃ 0.04, where the critical point has been found as φc(0.04) ≃ 0.575. The second one
has been done by Phan et al. [6] at σ ≃ 0.05, where the critical point has been found as φc(0.05) ≃ 0.577 ± 0.005 by using
the Krieger–Dougherty equation. The third one has been done by Pham et al. [7,8] at σ ≃ 0.069, where the critical point has
been found as φc(0.069) ≃ 0.580. The fourth one has been done by Kasper et al. [9] at σ ≃ 0.08, where the critical point has
been found as φc(0.08) ≃ 0.583. All those experiments belong to case (i) since φc(σ ) ≃ φh(σ ) < φ

(m)
c (σ ). The last one has

been done by Brambilla, et al. [10] at σ ≃ 0.1, where the critical volume fraction has been found as φc(0.1) ≃ 0.590±0.005.
Since φc(0.1) ≃ φh(0.1) > φ

(m)
c (0.1), this experiment belongs to case (iii). All the critical points are listed in Table 1. Finally,

we refer to a possibility of case (ii). The simulation results are approximately described by the simulation line given by

φ(m)
c (σ ) = 0.57971 + 0.079786σ , for σ ≥ 0.06. (76)

Hence the point of intersection of it with the hydrodynamic critical point φh(σ ) is found to be σ0 ≃ 0.094866 at φh(σ0) =

0.58728. If the simulations and the experiments are done at σ = σ0, therefore, both results are expected to coincide with
each other.

6.4. Phase diagram

In Fig. 2, the schematic representation of the phase diagram in volume fraction-polydispersity plane is shown, where
the detailed values of φc(σ ) are listed in Table 1. We note here that the critical points of the experiments coincide with the
hydrodynamic critical points φh(σ ) given by Eq. (69) within error and are very sensitive to a polydispersity σ . On the other
hand, those of the simulations obey Eq. (76) and are not so sensitive toσ [33]. This difference cannot be explainedwithout the
long-rangehydrodynamic interactions since all the simulations for hard spheres are performedonly under direct interactions
without them. Thus, the experimental results may support the asymptotic form of u(q, k) given by Eq. (71), which enables
us to predict three cases. Finally, we should mention that only in case (ii) the dynamical behavior in the experiments can
be exactly described by the Brownian-dynamics simulations if time in experiments and that in simulations are scaled by
1/q2DS

α and 1/q2D0, respectively.
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Fig. 2. (Color online) Phase diagram in volume fraction-polydispersity plane for polydisperse colloids. The symbols (□) indicate the critical points φc (σ )
obtained from the experimental data for hard-sphere colloids, where the detailed values are listed in Table 1. The symbols (◦) indicate the critical points
φ

(m)
c (σ ) obtained from the simulation results for hard spheres, (♢) the critical point φ(m)

c (0) obtained by TMCT for PY model without the hydrodynamic
interactions, and (+ ) the critical point φc (0) obtained by TMCT for PYmodel with the hydrodynamic interactions. The solid line indicates the hydrodynamic
critical point φh(σ ) given by Eq. (69), the dashed line the melting line obtained by theMonte Carlo simulation for hard spheres [60], the dot-dashed line the
random close packing for hard spheres from Ref. [61], and the dotted lines among the critical points φ(m)

c (σ ) for a guide to eyes. L indicates a liquid state, C
a crystal state, and G a glass state.

7. Summary

In this paper, we have derived the TMCT equation for the collective-intermediate scattering function f (q, t) in colloidal
suspensions by employing the same formulation as that used in molecular systems. Then, we have found the second-order
differential equation for the cumulant function K (q, t), where the nonlinear memory function contains the hydrodynamic
correlation effect in addition to themechanical correlation effect. Thus, we have explored how the long-range hydrodynamic
interactions affect the critical volume fraction φc(σ ) and predicted that there exist three cases for φc(σ ), depending on the
value of σ .

In order to check the existence of three cases, we have next investigated the critical volume fraction φc(σ ) obtained from
the four different experiments for suspensions of hard-sphere colloids for 0.04 ≤ σ ≤ 0.10. Then, we have shown that all
of them coincide with the hydrodynamic critical volume fraction φh(σ ) within error, where three of them belong to cases
(i) and one of them to (iii) (see Fig. 2). By using the hydrodynamic critical line given by Eq. (69) and the critical line of the
simulations given by Eq. (76), we have also referred to a possibility of case (ii) where Fh(q) = 0. In fact, as an intersection
point of both lines, we have found σ0 ≃ 0.094866 and φh(σ0) = 0.58728. Then, we have pointed out that if the Brownian-
dynamics simulations and the experiments are done at σ = σ0, both results are expected to coincide with each other
since the hydrodynamic effects are canceled out. Thus, we emphasize that the long-range hydrodynamic interactions are
indispensable to explain the experimental results for suspensions of polydisperse hard-sphere colloids. In order to confirm
the theoretical prediction given by Eq. (75) from a unified point of view, however, one needs more experimental data for
different values of σ . In fact, many data would be necessary to make an existence of three cases more clear because there
exists at least 3% error on the observed values of φ [18].

Finally, we mention that the same formulation as that discussed in this paper is applicable to the systems with the non-
direct interactions. However, it depends on the interactions whether the hydrodynamic interactions play an important role
or not. For example, the Coulomb interactions between highly charged colloids are known to lead to the critical volume
fraction φc much lower than φh [62,63]. In such systems, therefore, one can safely neglect the long-range hydrodynamic
interactions even in a supercooled state since φc = φ

(m)
c ≪ φh. Otherwise, one needs to take into account the hydrodynamic

effects seriously. This will be discussed elsewhere.
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Appendix. Derivation of Eq. (8)

Starting from Eq. (4), one can then obtain
∂

∂t
Πxp(t) = M(x, p)Πxp(t) +Ξxp(t) (A.1)

with the Fokker–Planck operator

M(x, p) = −

N∑
i=1

⎡⎣pi

m
·
∂

∂xi
+

∂

∂pi
·

N∑
j̸=i

F ij

⎤⎦
+

N∑
i=1

N∑
j=1

∂

∂pi
· ζij ·

[
1
m

pj + kBT
∂

∂pj

]
, (A.2)

where the functionΞxp(t) denotes the additive type Gaussian, Markov noise and satisfies

⟨Ξxp(t)⟩ = ⟨Ξxp(t)Πx′p′ (0)⟩ = 0, (A.3)

⟨Ξxp(t)Ξx′p′ (0)⟩ = 2kBTδ(t)
N∑
i=1

N∑
j=1

∂

∂pi
· ζij ·

∂

∂p′

j
δ(x − x′)δ(p − p′)pe(x, p). (A.4)

Here pe(x, p)(= ⟨Πxp(0)⟩) denotes the equilibrium distribution function, which satisfies M(x, p)pe(x, p) = 0. The formal
solution of Eq. (A.1) is given by

Πxp(t) = etMΠxp(0) +

∫ t

0
dse(t−s)MΞxp(s). (A.5)

Then, one can write an arbitrary function Aq(X(t), P(t)) as

Aq(X(t), P(t)) =

∫
dx

∫
dpAq(x, p)Πxp(t)

=

∫
dx

∫
dp[Πxp(0)etΛAq(x, p)

+

∫ t

0
dsΞxp(t − s)esΛAq(x, p)], (A.6)

whereΛ is the adjoint operator of the operatorM given by

Λ(x, p)δ(x − x′)δ(p − p′) = M(x′, p′)δ(x − x′)δ(p − p′). (A.7)

Use of Eqs. (A.2) and (A.7) then leads to Eq. (9). Hence one can write the correlation function ⟨Aq(t)Aq(0)∗⟩ as

⟨Aq(X(t), P(t))Aq(X(0), P(0))∗⟩ = ⟨Aq(x, p, t)Aq(x, p)∗⟩p, (A.8)

where

Aq(x, p, t) = etΛAq(x, p). (A.9)

Here the brackets ⟨· · ·⟩p denote the average over the equilibrium distribution function pe(x, p). Since there is no difference
between ⟨· · ·⟩ and ⟨· · ·⟩p, therefore, in the followingwe just use the brackets ⟨· · ·⟩ instead of ⟨· · ·⟩p for simplicity. The variable
Aq(x, p, t) now obeys a new Eq. (8).

References

[1] P.N. Pusey, Light Scattering in Liquids and Macromolecular Solutions, Plenum Press, New York, 1980.
[2] P.N. Pusey, W. van Megen, Nature 320 (1986) 340.
[3] W. van Megen, S.M. Underwood, Phys. Rev. Lett. 70 (1993) 2766.
[4] W. van Megen, S.M. Underwood, Phys. Rev. Lett. 49 (1994) 4206.
[5] W. van Megen, Transp. Theory Stat. Phys. 24 (1995) 1017.
[6] S. Phan, W.B. Russel, Z. Cheng, J. Zhu, P.M. Chaikin, J.H. Dunsmuir, R.H. Ottewill, Phys. Rev. E 54 (1996) 6633.
[7] K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 296 (2002)

104.
[8] K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Phys. Rev. E 69 (2004) 011503.
[9] A. Kasper, E. Bartsch, H. Sillescu, Langmuir 14 (1998) 5004.

[10] G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, A.B. Schofield, Phys. Rev. Lett. 102 (2009) 085703.
[11] D. Heckendorf, K.J. Mutch, S.U. Egelhaaf, M. Laurati, Phys. Rev. Lett. 119 (2017) 048003.
[12] P.N. Pusey, in: J.P. Hansen, D. Levesque, J. Zinn-Justin (Eds.), Liquids, Freezing and Glass Transition, North-Holland, Amsterdam, 1991.

http://refhub.elsevier.com/S0378-4371(18)31079-3/b1
http://refhub.elsevier.com/S0378-4371(18)31079-3/b2
http://refhub.elsevier.com/S0378-4371(18)31079-3/b3
http://refhub.elsevier.com/S0378-4371(18)31079-3/b4
http://refhub.elsevier.com/S0378-4371(18)31079-3/b5
http://refhub.elsevier.com/S0378-4371(18)31079-3/b6
http://refhub.elsevier.com/S0378-4371(18)31079-3/b7
http://refhub.elsevier.com/S0378-4371(18)31079-3/b7
http://refhub.elsevier.com/S0378-4371(18)31079-3/b7
http://refhub.elsevier.com/S0378-4371(18)31079-3/b8
http://refhub.elsevier.com/S0378-4371(18)31079-3/b9
http://refhub.elsevier.com/S0378-4371(18)31079-3/b10
http://refhub.elsevier.com/S0378-4371(18)31079-3/b11
http://refhub.elsevier.com/S0378-4371(18)31079-3/b12


M. Tokuyama et al. / Physica A 512 (2018) 552–565 565

[13] J.C. Crocker, D.G. Grier, J. Colloid Interface Sci. 179 (1996) 298.
[14] W. van Megen, T.C. Mortensen, S.R. Williams, J. Müller, Phys. Rev. E 58 (1998) 6073.
[15] E.R. Weeks, J.C. Crocker, A.C. Levitt, A. Schofield, D.A. Weitz, Science 287 (2000) 627.
[16] S. Gupta, M. Camargo, J. Stellbrink, J. Allgaier, A. Radulescu, P. Lindner, E. Zaccarelli, C.N. Likos, D. Richter, Nanoscale 7 (2015) 13924.
[17] G.L. Hunter, E.R. Weeks, Rep. Progr. Phys. 75 (2012) 066501.
[18] W.C. Poon, E.R. Weeks, C.P. Royall, Soft Matter 8 (2012) 21.
[19] P. Mazur, Physica A 110 (1982) 128.
[20] M. Tokuyama, I. Oppenheim, Phys. Rev. E 50 (1994) R16.
[21] M. Tokuyama, I. Oppenheim, Physica A 216 (1995) 85.
[22] M. Medina-Noyola, Phys. Rev. Lett. 60 (1988) 2705.
[23] H. Löwen, Phys. Rep. 237 (1994) 249.
[24] R.A. Lionberger, W.B. Russel, J. Rheology 41 (1997) 399.
[25] G. Nägele, P. Baur, Europhys. Lett. 38 (1997) 557.
[26] M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58 (1998) 3384.
[27] F. Sciortino, Nature Mater. 1 (2002) 145.
[28] I. Moriguchi, J. Chem. Phys. 106 (1997) 8624.
[29] M. Tokuyama, H. Yamazaki, Y. Terada, Phys. Rev. E 67 (2003) 062403.
[30] M. Tokuyama, H. Yamazaki, Y. Terada, Physica A 328 (2003) 367.
[31] M. Tokuyama, Y. Terada, J. Phys. Chem. B 109 (2005) 21357.
[32] M. Tokuyama, T. Narumi, E. Kohira, Physica A 385 (2007) 439.
[33] E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, P.N. Pusey, Phys. Rev. Lett. 103 (2009) 135704.
[34] L. Berthier, D. Coslovich, A. Ninarello, M. Ozawa, Phys. Rev. Lett. 116 (2016) 238002.
[35] B. Doliwa, A. Heuer, Phys. Rev. E 61 (2000) 6898.
[36] M. Hermes, M. Dijkstra, J. Phys.: Condens. Matter 22 (2010) 104114.
[37] M. Tokuyama, Phys. Rev. E 80 (2009) 031503.
[38] M. Rex, H. Löwen, Eur. Phys. J. E 28 (2009) 139.
[39] K.S. Schweizer, Curr. Opin. Colloid Interface Sci. 12 (2007) 297.
[40] E. Nazockdast, J.F. Morris, J. Fluid Mech. 713 (2012) 420.
[41] J. Mittal, G. Hummer, J. Chem. Phys. 137 (2012) 034110.
[42] B.D. Goddard, A. Nold, N. Savva, P. Yatsyshin, S. Kalliadasis, J. Phys.: Condens. Matter 25 (2013) 035101.
[43] R.N. Zia, J.W. Swan, Y. Su, J. Chem. Phys. 143 (2015) 224901.
[44] M. Tokuyama, Physica A 395 (2014) 31.
[45] M. Tokuyama, Physica A 430 (2015) 156.
[46] M. Tokuyama, Physica A 465 (2017) 229.
[47] M. Tokuyama, Physica A 484 (2017) 453.
[48] H. Mori, Progr. Theoret. Phys. 33 (1965) 423.
[49] M. Tokuyama, H. Mori, Progr. Theoret. Phys. 54 (1975) 918.
[50] M. Tokuyama, H. Mori, Progr. Theoret. Phys. 55 (1976) 411.
[51] R. Kubo, J. Phys. Soc. Japan 17 (1962) 1100.
[52] M. Tokuyama, I. Oppenheim, Physica A 94 (1978) 501.
[53] M. Tokuyama, Physica A 387 (2008) 4015.
[54] M. Tokuyama, Physica A 389 (2010) 951.
[55] U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C 17 (1984) 5915.
[56] W. Götze, R. Schilling, Phys. Rev. E 91 (2015) 042117.
[57] Y. Kimura, M. Tokuyama, Nuovo Cimento C 39 (2016) 300.
[58] T. Narumi, M. Tokuyama, Phys. Rev. E 95 (2017) 032601.
[59] J.K. Percus, G.J. Yevick, Phys. Rev. 110 (1958) 1.
[60] D.A. Kofke, P.G. Bolhuis, Phys. Rev. E 59 (1999) 618.
[61] W. Schaertl, H. Sillescu, J. Stat. Phys. 77 (1994) 1007.
[62] Ch. Beck, W. Härtl, R. Hempelmann, J. Chem. Phys. 111 (1999) 8209.
[63] M. Tokuyama, T. Furubayashi, J. Kawamura, Physica A 486 (2017) 681.

http://refhub.elsevier.com/S0378-4371(18)31079-3/b13
http://refhub.elsevier.com/S0378-4371(18)31079-3/b14
http://refhub.elsevier.com/S0378-4371(18)31079-3/b15
http://refhub.elsevier.com/S0378-4371(18)31079-3/b16
http://refhub.elsevier.com/S0378-4371(18)31079-3/b17
http://refhub.elsevier.com/S0378-4371(18)31079-3/b18
http://refhub.elsevier.com/S0378-4371(18)31079-3/b19
http://refhub.elsevier.com/S0378-4371(18)31079-3/b20
http://refhub.elsevier.com/S0378-4371(18)31079-3/b21
http://refhub.elsevier.com/S0378-4371(18)31079-3/b22
http://refhub.elsevier.com/S0378-4371(18)31079-3/b23
http://refhub.elsevier.com/S0378-4371(18)31079-3/b24
http://refhub.elsevier.com/S0378-4371(18)31079-3/b25
http://refhub.elsevier.com/S0378-4371(18)31079-3/b26
http://refhub.elsevier.com/S0378-4371(18)31079-3/b27
http://refhub.elsevier.com/S0378-4371(18)31079-3/b28
http://refhub.elsevier.com/S0378-4371(18)31079-3/b29
http://refhub.elsevier.com/S0378-4371(18)31079-3/b30
http://refhub.elsevier.com/S0378-4371(18)31079-3/b31
http://refhub.elsevier.com/S0378-4371(18)31079-3/b32
http://refhub.elsevier.com/S0378-4371(18)31079-3/b33
http://refhub.elsevier.com/S0378-4371(18)31079-3/b34
http://refhub.elsevier.com/S0378-4371(18)31079-3/b35
http://refhub.elsevier.com/S0378-4371(18)31079-3/b36
http://refhub.elsevier.com/S0378-4371(18)31079-3/b37
http://refhub.elsevier.com/S0378-4371(18)31079-3/b38
http://refhub.elsevier.com/S0378-4371(18)31079-3/b39
http://refhub.elsevier.com/S0378-4371(18)31079-3/b40
http://refhub.elsevier.com/S0378-4371(18)31079-3/b41
http://refhub.elsevier.com/S0378-4371(18)31079-3/b42
http://refhub.elsevier.com/S0378-4371(18)31079-3/b43
http://refhub.elsevier.com/S0378-4371(18)31079-3/b44
http://refhub.elsevier.com/S0378-4371(18)31079-3/b45
http://refhub.elsevier.com/S0378-4371(18)31079-3/b46
http://refhub.elsevier.com/S0378-4371(18)31079-3/b47
http://refhub.elsevier.com/S0378-4371(18)31079-3/b48
http://refhub.elsevier.com/S0378-4371(18)31079-3/b49
http://refhub.elsevier.com/S0378-4371(18)31079-3/b50
http://refhub.elsevier.com/S0378-4371(18)31079-3/b51
http://refhub.elsevier.com/S0378-4371(18)31079-3/b52
http://refhub.elsevier.com/S0378-4371(18)31079-3/b53
http://refhub.elsevier.com/S0378-4371(18)31079-3/b54
http://refhub.elsevier.com/S0378-4371(18)31079-3/b55
http://refhub.elsevier.com/S0378-4371(18)31079-3/b56
http://refhub.elsevier.com/S0378-4371(18)31079-3/b57
http://refhub.elsevier.com/S0378-4371(18)31079-3/b58
http://refhub.elsevier.com/S0378-4371(18)31079-3/b59
http://refhub.elsevier.com/S0378-4371(18)31079-3/b60
http://refhub.elsevier.com/S0378-4371(18)31079-3/b61
http://refhub.elsevier.com/S0378-4371(18)31079-3/b62
http://refhub.elsevier.com/S0378-4371(18)31079-3/b63

	A crucial role of long-range hydrodynamic interactions near the colloidal glass transition based on time-convolutionless mode-coupling theory
	Introduction
	TMCT for colloidal suspensions
	Theoretical background of TMCT
	A Langevin equation in stage [L]
	An equation for f(q,t) in stage [K]
	An equation for ψ(q,t) in stage [K]
	A second-order differential equation for K(q,t) in stage [K]
	A Markov equation for K(q,t) in stage [H]

	Nonlinear memory function
	Ergodic to non-ergodic transition
	Hydrodynamic interactions in suspensions of polydisperse hard spheres
	Hydrodynamic singular point
	Asymptotic form of hydrodynamic vertex Ω(q,k)

	Critical volume fraction for polydisperse hard-sphere colloids
	Critical point obtained from simulations
	Critical point obtained from TMCT equation
	Critical point obtained from experiments
	Phase diagram

	Summary
	Appendix Derivation of Aeq
	References


