
Physica A 514 (2019) 533–548

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

On the relation between a length cutoff in
time-convolutionless mode-coupling theory and a
characteristic length at β-relaxation stage in glass-forming
materials
Michio Tokuyama a,∗, Takayuki Narumi b
a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
b Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan

h i g h l i g h t s

• A characteristic length at β stage in glass-forming materials is proposed.
• A length cutoff in memory function of time-convolutionless mode-coupling equation is found.
• Relation of both lengths to caging at β stage is explored.
• Time-convolutionless mode-coupling equation is solved numerically.
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a b s t r a c t

A length cutoff b contained in the nonlinear memory function of the time-convolutionless
mode-coupling theory (TMCT) equation is obtained by solving the TMCT equation in a
manner consistent with the simulation results near the glass transition. A characteristic
length ℓ of a supercooled liquid is also introduced at a β-relaxation stage based on the
mean-field theory proposed by Tokuyama independently and is shown to describe a
displacement of a particle in a cage. Then, both lengths are shown to satisfy the inequality
ℓ ≥ b ≥ bc in a supercooled state within an original TMCT equation, where bc is a critical
cutoff obtained independently by solving the LambertW-function at the critical point. Their
control parameter dependence is also explored from a unified point of view. Thus, both
lengths are shown to characterize the same caging mechanism at β stage in a supercooled
liquid.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For past few decades, a large number of theoretical attempts has been made to understand the mechanism of the
glass transition in various glass-forming materials [1–10]. A well-known theory of this kind is the mode-coupling theory
(MCT) [1,2], which was the origin of all later works on the glass transition. Although some of works have been partially
successful in specific problems, there does not exist a systematic theory yet which enables us not only to describe the
dynamics of supercooled liquids but also to clarify the mechanism of the glass transition from a unifying viewpoint.
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The principal purpose of the present paper is to propose a statistical–mechanicalmethod of finding a characteristic length
ℓ and a length cutoff b contained in the nonlinear memory function consistently at a β-relaxation stage in equilibrium glass-
forming liquids. Depending on a space–time scale, there exist different characteristic stages in macroscopic systems. A well-
known example of this kind is seen in dilute gases. There are three stages. The first is an initial characteristic stage [N] where
the position vector X j(t) and the momentum P j(t) of jth particle at time t obey the Newton equation. The second is a kinetic
stage [K] where the characteristic length is given by a mean-free path ℓf . By setting a cutoff b as ℓf ≥ b in the relevant
variables, the Boltzmann equation is thus derived from the Newton equation consistently in the low-density limit. The last
is a hydrodynamic stage [H]where there is no characteristic length. By setting b as b ≫ ℓf in the hydrodynamic variables, the
hydrodynamic equations are then derived from the Newton equation or from the Boltzmann equation, up to lowest order in
∇(∼ O(b−1)). In the dynamics of equilibrium glass-forming liquids, therefore, there exists three characteristic time stages
(see Fig. 1); an initial stage [N] for a short timewhere the velocity of a particle is given by an average thermal velocity and the
ballisticmotion dominates the system, a kinetic stage [K] for an intermediate timewhich consists of two stage, aβ-relaxation
stage where the caging plays an important role and a α-relaxation stage where the dynamic heterogeneity [11–27] plays
an important role, and a hydrodynamic stage [H] for a long time where the diffusion process dominates the system. In the
present paper, we focus only on the dynamics at the β-relaxation stage. Then, we find the two lengths b and ℓ independently
based on two different theories in three different equilibrium states, [Gas] a gas state, [L] a liquid state, and [S] a supercooled
state. The first theory is the time-convolutionless mode-coupling theory (TMCT) [28–31] to find the cutoff b. The other is
the mean-field theory (MFT) [32–35] to introduce the length ℓ. Thus, it is explored how both lengths ℓ and b are physically
related to each other at a β-relaxation stage in supercooled liquids.

We begin in Section 2 by reviewing TMCT briefly. In order to study the dynamics of glass-forming liquids near the glass
transition, Tokuyama has recently proposed TMCT and then derived the TMCT equation from first principles [28–31]. Thus,
it has been shown that similarly to MCT, an ergodic to nonergodic transition also occurs in TMCT and also that all the
mathematical analyses employed in MCT are directly applicable to TMCT. Hence the next problem left is just how to solve
the TMCT equation numerically in a manner consistent with the simulation results or the experimental data. However, we
now briefly explain what makes it difficult. Let λ denote a control parameter, such as a volume fraction φ and an inverse
temperature 1/T .We take a scaled intermediate scattering function fα(q, t) to describe the relevant process of interestwhose
characteristic length is supposed to be ℓ, where the magnitude q of the wave vector q is set as 0 < q ≤ b−1. In general, b
is set as b ≤ ℓ. Here α = c stands for a collective part and α = s for a self-part. Then, TMCT provides two types of basic
equations. One is a closed nonlinear second-order differential equation (I) for fα(q, t), which contains the unknown cutoff b
through the nonlinear memory function. As λ increases, Eq. (I) ensures that there exists a non-zero solution fα(q) for long
times above the critical point λc , at which an ergodic to nonergodic transition occurs. Hence the other is a closed nonlinear
equation (or the so-called Lambert W-function) (II) for the non-ergodicity parameter fα(q), which is derived from Eq. (I)
in the long-time limit. This equation enables us to determine a critical point λc . In both equations the nonlinear memory
functions contain a static structure factor S(k) and depend on b through the relation 0 < k ≤ b−1. If the static structure
factor is given, therefore, one can solve Eq. (II) numerically and find a critical cutoff bc at λ = λc . In fact, this has been
done by employing the Percus–Yevick (PY) static structure factor [36] for monodisperse hard-sphere systems [37,38]. When
λ < λc , one has to solve Eq. (I) under an appropriate value of b, which must satisfy the inequality b(λ) ≥ bc . Since the
value of b(λ) is in general unknown, however, this makes difficult to solve it even numerically. On the other hand, bc can
be found independently of b under the fact that the diffusion coefficient becomes zero at λ = λc . Hence this fact may give
us an important hint to find a reasonable value of b(λ) [31]. This will be discussed in details later. Finally, we review MFT
briefly. Since Eq. (I) does not contain ℓ, it is reasonable to find it independently in a phenomenological manner based on
MFT. Then, one can find the characteristic length ℓ at a β-relaxation stage in a supercooled state in addition to a gas state
and a liquid state. We also discuss the universality in the dynamics of glass-forming materials, in which the dynamics in
different systems coincides with each other if the scaled diffusion coefficient in different systems has the same value. Thus,
it is shown that this universality enables us to use the PY static structure factor even for polydisperse hard-sphere systems.

In Section 3, we discuss the characteristic length ℓ at β stage. As a simple example of glass-forming materials, we first
take the hard-sphere fluids with size polydispersities. By using the simulation results on those systems, we find the volume
fraction φ dependence of ℓ in both states [Gas] and [L]. Then, we show that the lengths in both states are characteristic
lengths related to the mean-free path (Lf ∼ φ−1) and the inter-particle distance (Ll ∼ φ−1/3), respectively. In a supercooled
state [S], ℓ is shown to obey a power law ℓ ∼ D̃(φ/φc)µ/2, where a scaled diffusion coefficient D̃(x) is a singular function of x
and µ is an exponent to be determined. Hence it is also expected to be a characteristic length, describing a displacement in
a cage, which is mostly formed by surrounding particles at a β-relaxation stage. Secondly, we also investigate the length ℓ
in two types of glass-forming materials, fragile liquids and strong liquids, and then show that the same power laws as those
obtained in hard spheres hold even in their systems, except that φ is now replaced by an inverse temperature 1/T .

In Section 4, in order to obtain the length cutoff b(λ) numerically, we choose the hard-sphere fluids as a simple example
since the static structure factor for monodisperse hard-sphere systems is given analytically by the PY model [36]. Then, we
solve the TMCT equation numerically in amanner consistent with the simulation results on hard spheres and find the length
cutoff b(φ). This is done independently of ℓ(φ). Thus, we check whether b(φ) satisfies the same power law as that of ℓ(φ) or
not and then explore how b(φ) relates physically to ℓ(φ) at β-relaxation stage in a supercooled state. We conclude in Section
5 with a summary together with the prediction based on the present approach that the four-point dynamic correlation
length ξ4(λ) for dynamic heterogeneity at α stage in [S] is inversely proportional to the length ℓ(λ) at β stage, leading to
ξ4(λ) ∝ ℓ(λ)−1

∼ D̃−µ/2.
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Fig. 1. (Color online) Classification of the basic equations discussed in the present paper into three stages, [N], [K], and [H], depending on a space (r)-time
(t) scale, where ℓi and τi indicate the relevant length and time of interest, respectively.

2. Basic equations

In the present section, we summarize and discuss the basic equations and concepts, which are used in the present paper.

2.1. TMCT equation

In this subsection, we first explain the theoretical background of TMCT and then briefly review themacroscopic equations
in the equilibriummolecular systemswhich are derived from first principles by using a new formulation based on TMCT [28–
31]. The outline of TMCT is as follows. As is shown in Fig. 1, depending on a space–time scale, the basic equations in [K] and
[H] can be formally derived from the Newton (or Heisenberg) equations in a stage [N]. In a kinetic stage [K], the relevant
variables are given by the current densities and the number densities. A generalized linear non-Markov Langevin equation
for the current density is derived from the Heisenberg equation by using the Mori projection-operator method [39] (see a
dashed arrow (M) in Fig. 1), where the memory term is convolution in time and is written in terms of correlation function
of the fluctuating force. A linear non-Markov stochastic diffusion equation for the number density is also derived from the
Heisenberg equation by employing the Tokuyama–Mori projection-operatormethod [40,41] (see a dotted arrow (T) in Fig. 1),
where the memory term is convolutionless in time and is written in terms of correlation function of the fluctuating current.
Those coupled equations are then used to find a closed nonlinear non-Markov second-order differential equation for the
average number density (see a bold arrow in Fig. 1). This is a TMCT equation not only to describe the dynamics of supercooled
liquids but also to find a critical point at which an ergodic to non-ergodic transition occurs. In a hydrodynamic stage [H], the
Markov diffusion equation for the number density is derived (see a dot-dashed arrow in Fig. 1). Thus, it is shown that the
closed nonlinear equation can describe the dynamics of equilibrium glass-forming liquids from an initial stage to a diffusion
stage. Here we note that in MCT [1,2] the Mori projection-operator method has been used to obtain the basic equations
for both relevant variables. As discussed in the previous papers [28,31], however, it is important to employ two types of
projection-operator methods to derive the basic equations for different relevant variables. In fact, it is indispensable to use
the time-convolutionless formalism for the number density to recover the cumulant expansion proposed by Kubo [42]. Thus,
TMCT enables us to calculate each cumulant-expansion term, such as amean-square displacementM2(t) and a non-Gaussian
parameter α2(t)(= 3M4(t)/5M2(t)2 − 1) [43], consistently from first principles, where M2n(t) = ⟨|X j(t) − X j(0)|2n⟩, the
brackets being the average over an equilibrium ensemble.

We now briefly review the TMCT equation in stage [K]. We consider the three-dimensional equilibrium glass-forming
system, which consists of N particles with mass m and diameter σ in the total volume V at temperature T . The scaled
intermediate scattering function fα(q, t) is then given by

fα(q, t) = ⟨ρα(q, t)ρα(q, 0)∗⟩/Sα(q) (1)

with the collective density fluctuation

ρc(q, t) =
1

N1/2

⎡⎣ N∑
j=1

ρs(q, t) − Nδq,0

⎤⎦ , (2)

and the self-density fluctuation

ρs(q, t) = eiq·X j(t), (3)
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where ⟨ρs(q, t)⟩ = δq,0 and ⟨ρc(q, t)⟩ = 0, and q = |q|. Here Sc(q) = S(q) and Ss(q) = 1, where S(q)(= ⟨|ρc(q, 0)|2⟩). Since
the density fluctuations ρα(q, t) are macroscopic physical quantities, we set 0 < q ≤ b−1. As suggested in the previous
paper [31], the cutoff b should be in general fixed so that the numerical solutions of TMCT equation coincide with the
simulation results or the experimental data. This will be discussed in details later.

As shown in the previous paper [31], the coupled equations for the scattering function fα(q, t) and the current–current
correlation function ψα(q, t) are obtained in stage [K] as

∂

∂t
fα(q, t) = −q2Dα(q, t)fα(q, t), (4)

∂

∂t
ψα(q, t) = −γψα(q, t) −

∫ t

0
∆ϕα(q, t − s)

fα(q, s)
fα(q, t)

ψα(q, s)ds (5)

with the q- and t-dependent diffusion coefficient

Dα(q, t) =

∫ t

0
ψα(q, s)ds, (6)

and the nonlinear memory function

∆ϕα(q, t) =
ρv2th

2nα

∫
<

dk
(2π )3

vα(q, k)2S(k)Sα(|q − k|)fc(k, t)fα(|q − k|, t), (7)

where γ is a damping constant to be determined, nc = 1, ns = 0, ρ = N/V , and vth(= (kBT/m)1/2) an average thermal
velocity. Here

∫
<
denotes the sumoverwave vectors kwhosemagnitudes are smaller than a cutoff b−1. The vertex amplitude

vα(q, k) is given by

vα(q, k) = q̂ · kc(k) + nα q̂ · (q − k)c(|q − k|), (8)

where ρc(k) = 1 − 1/S(k) and q̂ = q/q. Here γ (λ) is a damping constant which is determined by the fitting with the
simulation results or the experimental data and depends only on the extensive parameter, such as the volume fraction
φ [31]. The initial conditions are given by fα(q, 0) = 1 and ψα(q, 0) = v2th/Sα(q).

In order to obtain a single closed equation from the above coupled equations, it is convenient to introduce the cumulant
function Kα(q, t) by [28–31]

fα(q, t) = exp[−Kα(q, t)]. (9)

By taking the Laplace transform of Eqs. (4) and (5), one can then obtain the closed nonlinear second-order differential
equation for Kα(q, t) as [31]

∂2Kα(q, t)
∂t2

=
q2v2th
Sα(q)

− γ
∂Kα(q, t)
∂t

−

∫ t

0
ds

∫ s

0
dτ∆ϕα(q, s − τ )

fα(q, τ )
fα(q, s)

∂2

∂τ 2
Kα(q, τ ). (10)

Eq. (10) is a TMCT equation to describe the dynamics of equilibrium glass-forming liquids. From Eq. (10), one can easily find
the asymptotic solutions. In an initial stage for a short time of order τγ (= 1/γ ), one obtains

Kα(q, t) ≃ q2
v2th

γ 2Sα(q)
(γ t − 1 + e−γ t ), (11)

which leads to Kα(q, t) ≃ q2v2tht
2/2Sα(q) for t ≪ τγ . On the other hand, in a diffusion stage [H] for a long time, one also

obtains

Kα(q, t) ≃ q2Dα(q)t (12)

with the q-dependent long-time diffusion coefficient

Dα(q) = Dα(q, t = ∞) =
v2th/Sα(q)

γ +
∫

∞

0 ∆ϕα(q, s)ds
. (13)

As shown in the previous paper [31], Eq. (10) ensures an existence of ergodic to non-ergodic transition at a critical
point λc , above which the scaled scattering function fα(q, t) reduces to a non-zero value fα(q) for long times, the so-called
nonergodicity parameter. When λ ≥ λc , introducing the nonergodicity cumulant Kα(q) by

fα(q) = exp[−Kα(q)], (14)

one can obtain a closed equation for Kα(q)

Kα(q)Fα(q) = 1 (15)
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with the long-time limit of the memory function

Fα(q, fc, fα) =
1

2nα (2π )3

∫
<

dkV (2)
α (q, k, |q − k|)fc(k)fα(|q − k|), (16)

where the vertex V (2)
α is given by

V (2)
α (q, k, |q − k|) = ρSα(q)Sc(k)Sα(|q − k|)vα(q, k)2/q2. (17)

The critical point λc is thus determined by solving Eq. (15) numerically. In fact, Kα(q) is considered to be a kind of the Lambert
W-function. Hence this mathematically ensures that there exists a critical point. Then, it is shown that at the critical point
there exists a maximum critical cutoff bc , where the nonergodic parameter fα(q) reduces to 0 at q = b−1

c . This means that
the value of λc does not change even if the cutoff b is set to be b ≤ bc . The existence of such a maximum value is mainly
due to the fact that the static structure factor S(q) reduces to a unity at not so large value of q. Since b is a length cutoff of
ℓ, therefore, it is expected to satisfy the inequality ℓ ≥ b ≥ bc for λ ≤ λc . We also note here from Eq. (13) that at λc the
diffusion coefficient Dα(q) becomes 0 as Dα(q) ∼ limt→∞(tFα(q))−1

= 0.
In order to discuss the dynamics of glass-forming liquids, one has to solve Eq. (10) numerically by choosing an appropriate

value of b(> bc) for λ < λc . The long-time self-diffusion coefficient is usually obtained not only by the simulations but also
by experiments. Hence the easiest way to find the cutoff b is to solve Eq. (10) consistently so that the diffusion coefficient
coincides with that of the simulation results or that of experimental data. In fact, as shown in Ref. [31], from Eq. (10) one can
obtain the following equation for the mean-square displacementM2(t):

M2(t) = 6
v2th

γ 2 (γ t − 1 + e−γ t ) −

∫ t

0
Γ0(t − s)M2(s)ds (18)

with the nonlinear memory term

Γ0(t) =
ρv2th

6π2

∫ 1/b

0
dkk4c(k)2S(k)

∫ t

0
dse−γ (t−s)fc(k, s)fs(k, s). (19)

For t ≫ τγ , Eq. (18) then reduces toM2(t) ≃ 6DL
S t with the long-time self-diffusion coefficient

DL
s =

v2th

γ +
ρv2th
6π2

∫ 1/b
0 dkk4c(k)2S(k)

∫
∞

0 dsfc(k, s)fs(k, s)
. (20)

In Section 4, we show how the cutoff b(λ) is found consistently under the condition that the self-diffusion coefficient DL
s

given by Eq. (20) coincides with that obtained from the simulation results. Thus, we explore the physical role of b in the
memory function and also check under which circumstance the inequality ℓ ≥ b holds. Finally, we mention that DL

s = 0 at
λ = λc . Thus, it turns out that the critical cutoff bc can be in principle also obtained by solving Eq. (10) under the condition
DL
s = 0.

2.2. Mean-field theory

In this subsection, we introduce a mean displacement ℓ and discuss its related mechanism. In order to describe the
dynamics of the glass-forming liquids, the following mean-field equation has been proposed forM2(t) [32,33]:

d
dt

M2(t) = 6DL
s + 6[v2tht − DL

s]e
−M2(t)/ℓ2 . (21)

Here ℓ is a mean displacement over which a particle can move freely. Eq. (21) is easily solved to give

M2(t) = 6DL
s t + ℓ2 ln

[
e−6t/τβ +

1
6

(
τβ

τf

)2 {
1 −

(
1 +

6t
τβ

)
e−6t/τβ

}]
(22)

with the β-relaxation time for a particle to diffuse over a distance of order ℓwith the diffusion coefficient DL
s

τβ = ℓ2/DL
s, (23)

where τf (= ℓ/vth) is a mean-free time for a particle to move over a distance of order ℓ with the velocity vth. From Eq. (22),
we have M2(t) ≃ 3v2tht

2 for a short time t ≪ τf , while M2(t) ≃ 6DL
s t for a long time t ≫ τβ . Hence the intermediate-time

region for τf ≤ t ≤ τβ is the so-called β-relaxation stage, where a cage related to ℓ is formed. The numerical value of ℓ can
be obtained only by fitting Eq. (22) with the simulation results or the experimental data. As is shown in Fig. 2, however, this
fitting works well only in a liquid state [L] but not in a supercooled state [S], where in the β stage the solution does not fit
with the simulation results in [S], while it does in [L]. Hence the fitting value ℓ has an ambiguity in [S]. In order to avoid this
difficulty, one may separate the mean-field solution into two parts [32,33]; the fast-relaxation part

M f
2(t) = ℓ2 ln

[
1 +

1
6

(
τβ

τf

)2 {
1 −

(
1 +

6t
τβ

)
e−6t/τβ

}]
, (24)
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Fig. 2. (Color online) A log–log plot of the scaledmean-square displacementM2(t)/σ 2 versus scaled time t/t0 for the Stillinger–Weber (SW) binarymixtures
A80B20 , where t0 = σ/vth . The solid lines indicate the simulation results [44–46] at T = 2.0 [L] and 0.714 [S]. The long-dashed lines indicate the mean-field
solution given by Eq. (22), where ℓ/σ = 0.149 [L] and 0.09434 [S] and DL

s/σvth = 4.682×10−2 [L] and 8.438 × 10−4 [S]. The dotted lines indicate the fast-
and slow-relaxation parts in [S], where ℓ/σ = 0.09089 andDL

s/σvth = 8.438×10−4 . The symbols (•) indicate themean-free time τf and (□) the β-relaxation
time τβ .

and the slow-relaxation part

Ms
2(t) = 6DL

s t + ℓ2 ln

[
e−6t/τβ +

1
6

(
τβ

τf

)2
]
. (25)

Those solutions lead to the following asymptotic forms:

M f
2(t) ≃

{
3v2tht

2, for t ≪ t0,
ℓ2 ln[1 +

1
6 (
τβ

τf
)2], for t ≫ t0,

(26)

Ms
2(t) ≃

{
ℓ2 ln[1 +

1
6 (
τβ

τf
)2], for t ≪ t0,

6DL
s t, for t ≫ t0.

(27)

Then, the mean displacement ℓ is obtained so that the slow-relaxation part has a better fit with the simulation result in the
β-relaxation stage for τf ≤ t ≤ τβ . Thus, the reliable value of ℓ can be found consistently. In fact, as is shown in Fig. 2, from
the simulation results at T = 0.714 one can find ℓ/σ = 0.09089 by using Eq. (25), instead of the direct fitting value 0.09434
obtained by Eq. (22). In the next section, we show that the displacement ℓ in [S] plays a role of a characteristic length to
describe a caging in the β stage.

2.3. Universality

We finally discuss the universality in the dynamics of glass-forming materials [32–35]. If the scaled diffusion coefficient
D̃(= qmDL

s/vth) has the same value even in different systems, the scaled mean-square displacements q2mM2(t) obtained in
the different systems versus scaled time qmvtht coincide with each other, where qm is the first peak position of the static
structure factor S(q). The simple examples of such a universality are seen in Fig. 3. This is because the universal parameter
D̃ is described by a singular function of λ/λc . As discussed in Refs. [34,35], the α- and β-relaxation times τα and τβ of the
self-diffusion process in [S] are shown to obey the power laws

τα ∝ D̃−(1+µ), τβ ∝ D̃−(1−µ), (28)

where the exponentµ is given byµ ≃ 2/10 for fragile liquids and 2/11 for strong liquids. From Eqs. (23) and (28), the scaled
length ℓqm at β stage then obeys the universal function

ℓqm = L(λ/λc) ∝ D̃µ/2. (29)
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Fig. 3. (Color online) A log–log plot of the scaledmean-square displacement q2mM2(t) versus scaled time qmvtht for different systems. The solid line indicates
the simulation results on the SW binary mixtures A80B20 at T = 0.833 [44–46] and the dotted line on the Lennard-Jones (LJ) binary mixtures A80B20 at
T = 0.588 [47,48], where qmσ = 7.25. The symbols indicate the simulation results on Al2O3 [45,46]; (•) at T = 3100 (K) and (□) at T = 2700 (K), where
qm = 2.7 (Å).

Table 1
φc , φs , and φl for different values of δ.
δ φl φs φg φc

0.00 0.4000 0.5315 0.5799a 0.5820
0.06 0.4017 0.5338 0.5824a 0.5845
0.15 0.4068 0.5405 0.5898 0.5919

aIndicates the expected value from φg (δ = 0.15).

By using Eqs. (28) and (29), one can also predict that the length at α stage must be proportional to ℓ−1 and satisfies the
relation

τα ∝ ℓ−2/D̃. (30)

This will be briefly discussed in Section 5 together with the simulation results [21–26] obtained for the coherence length
at α stage. Finally, we note that the universal functions D̃(x) and L(x) depend not only on types of control parameters, an
intensive parameter such as inverse temperature 1/T and an extensive parameter such as volume fraction φ but also on
types of liquids, fragile liquids and strong liquids. In the next section, we show the examples of L(x) in different systems.

3. A characteristic length

In this section, we discuss how the mean displacement ℓ obtained by fitting Eq. (25) with various simulation results is
related to a well-known characteristic length and then show that ℓ obeys the universal function.

3.1. Hard-sphere fluids

The molecular-dynamics (MD) simulations have been performed on hard spheres with radius ai and mass mi (i =

1, . . . ,N) in a cubic box of volume V at a constant temperature T [49–52]. The distribution of radii is assumed to obey a
Gaussian distribution with the standard deviation δ divided by the average radius a, where mi is proportional to a3i . Then,
the volume fraction φ(δ) is given by φ(δ) = φ(0)(1 + 3δ2), where φ(0) = 4πa3ρ/3. The long-time self-diffusion coefficient
DL
s(φ, δ) obtained by the MD simulations are then shown to obey the following power law within error:

DL
s(φ, δ)
av0

=

(
1 −

φ(δ)
φc(δ)

)2

, (31)
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Fig. 4. (Color online) A log plot of the self-diffusion coefficient DL
s/av0 versus volume fraction φ(0). The symbols (□), (◦), and (♢) indicate the simulation

results at δ = 0.0, 0.06, and 0.15, respectively, where the volume fraction φ(δ) is shifted to φ(0) by using Eq. (32). The solid line indicates the power law
given by Eq. (31) at δ = 0.

where a = σ/2 and v0 =
√
3̄vth. From a viewpoint of universality, therefore, the following relation is found:

φ(δ)
φc(δ)

=
φ(δ′)
φc(δ′)

, (32)

where the critical volume fraction φc(δ) is listed in Table 1 for three different values δ = 0.00, 0.06, and 0.15. By using such a
relation, it is thus shown in Fig. 4 that all the simulation results obtained for different values of δ are collapsed into a single
power law given by Eq. (31). The length ℓ is also obtained by the best fitting of Eq. (25) with the simulation results in the
β-relaxation stage for τf ≤ t ≤ τβ (see Fig. 5). We next discuss two cases for δ = 0.00 and 0.15, separately.

3.1.1. Monodisperse case (δ = 0)
In Fig. 6, the scaled displacement ℓ/σ is plotted versus φ. As φ increases, ℓ drastically decreases up to φ = φl(0), where

φl(0) is a liquid point whose value is listed in Table 1. This region is considered to be a gas state [Gas]. In fact, the mean-free
path Lf for the Maxwell distribution of velocity is given by Lf (φ) = 1/(21/2πa2ρ) = 21/2σ/(3φ). Hence the displacement
ℓf (φ, 0) over which the particle can move freely is given by

ℓf (φ(0)) = Lf − σ =

(
21/2

3
φ−1

− 1
)
σ . (33)

Then, the simulation results are shown to be well described by ℓf up to φl within error. For φl(0) ≤ φ ≤ φs(0), ℓ gradually
decrease, where φs(0) is a supercooled point whose value is listed in Table 1. This region must be a liquid state [L]. The
average inter-particle distance Ll is given by Ll(φ) = a/φ1/3. Hence the displacement ℓl(φ, 0) is given by

ℓl(φ(0)) = Ll − a =
(
φ−1/3

− 1
) σ
2
. (34)

The simulation results are also shown to be well described by ℓl up to φs within error. For φ > φs(0), the simulation results
start to decrease drastically, leading to the crystallization. Thus, it turns out that in monodisperse hard spheres, the gas line
ℓf is related to the mean-free path Lf and the liquid line ℓl to the inter-particle distance Ll. Hence the mean displacement ℓ
is considered to be related to a characteristic length to describe a β-relaxation process.

3.1.2. Polydisperse case (δ ̸= 0)
In order to find a characteristic length in a supercooled state [S], we now discuss the polydisperse case (δ ̸= 0). Similarly

to the monodisperse case, the displacement ℓ(φ, δ) is obtained from the fitting with the simulation results at δ = 0.06 and
0.15 consistently. In Fig. 7, the fitting results for ℓ(φ(0.15)) are shown versus φ. In both states [Gas] and [L], the fitting results
are shown to be described well by the following universal functions:

ℓf (φ(δ)) =

[
21/2

3

(
φc(0)φ(δ)
φc(δ)

)−1

− 1

]
σ , (35)
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Fig. 5. (Color online) A log–log plot of the scaled mean-square displacement M2(t)/σ 2 versus scaled time t/t0 for hard-sphere fluids. The dashed lines
indicate the simulation results at δ = 0.0 for φ = 0.500 [L] and 0.545 [C] and the solid lines the simulation results at δ = 0.15 for φ = 0.570 [S] and 0.620
[G]. The dotted lines indicate the slow-relaxation part given Eq. (25). The details are the same as in Fig. 2.

Fig. 6. (Color online) Amean-displacement ℓ/σ versusφ for hard-sphere fluids at δ = 0. The symbols (□) indicate the length ℓ obtained from the simulation
results. The dashed line indicates the gas line ℓf given by Eq. (33) and the dotted line the liquid line ℓl given by Eq. (34). The vertical dotted lines indicate
φl , φs , and φc from left to right, respectively. [C] stands for a crystal state.

ℓl(φ(δ)) =

[(
φc(0)φ(δ)
φc(δ)

)−1/3

− 1

]
σ

2
, (36)

where Eq. (32) has been used to extend the lines ℓf (φ(0)) and ℓl(φ(0)) to the polydisperse cases. After the liquid state [L], the
supercooled state [S] appears forφs(δ) ≤ φ ≤ φg (δ), whereφg (δ)(< φc(δ)) is the glass transition volume fractionwhose value
is listed in Table 1. From Eq. (29), we just assume the simple form for the supercooled line ℓs as 1/(ℓsqm) = A[BD̃−µ/2

− 1],
where the prefactors A and B are found from the fitting with the simulation results in [S] at δ = 0.06 and 0.15. Then, we find
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Fig. 7. (Color online) A mean-displacement ℓ/σ versus φ for hard-sphere fluids at δ = 0.15. The symbols (□) indicate the length ℓ obtained from the
simulation results. The dashed line indicates the gas line given by Eq. (35), the dotted line the liquid line given by Eq. (36), and the solid line the supercooled
line given by Eq. (37). [G] stands for a glass state. The details are the same as in Fig. 6.

Table 2
Prefactors Ai and Bi for two types of molecular systems.
State Prefactor Fragile liquids Strong liquids

Liquid state Al 0.2757 0.1932
Bl 3.4159 2.9420

Supercooled state As 0.1874 1.3526
Bs 5.2279 1.7275

A ≃ 0.4924 and B ≃ 2.6312. Thus, we obtain

ℓs(φ(δ))qm(φ(δ)) =
1

A[BD̃(φ(δ))−µ/2 − 1]
. (37)

Near the critical point, use of Eqs. (31) and (37) then leads to ℓs(φ(δ)) ∝ D̃µ/2 ∝ (1−φ(δ)/φc(δ))0.2. Forφ > φg the simulation
results start to deviate from the supercooled line ℓs(φ(δ)). This deviation is corresponding to the fact that the self-diffusion
coefficient DL

s of the simulation results start to deviate from Eq. (31) at φg (see Fig. 4).

3.2. Two types of glass-forming materials

In this subsection, we discuss the displacement ℓ obtained by the molecular-dynamics simulations performed on two
types of glass-forming materials, fragile liquids and strong liquids, separately, in both of which the control parameter is
temperature T . Then, we show that the fitting values of ℓ in [L] and [S] are described by the universal functions similar to
Eqs. (36) and (37). For fragile liquids we take the binary mixtures A80B20 with the Stillinger–Weber potential [53] and Al2O3
with the Born–Meyer potential [54]. For strong liquids we take SiO2 with the Beest–Kramer–Santen (BKS) potential [55]
and also SiO2 with the Nakano–Vashishta (NV) potential [56]. The detailed information about those simulations is found in
Refs. [44–46].

The mean-square displacement M2(t) for an arbitrary particle in binary systems is calculated by using M2(t) =

N−1 ∑N
j=1⟨|X j(t) − X j(0)|2⟩, where N is the total number of particles. Similarly to the hard-sphere systems, the simulation

results are analyzed by using the mean-field solution given by Eq. (25) consistently. Thus, the temperature dependence of
the displacement ℓ is found for each system. Because of the universality, we have ℓqm = L(Tc/T ). In order to find the liquid
line ℓl and the supercooled line ℓs, therefore, it is convenient to first replace φ(δ)/φc(δ) in Eqs. (36) and (37) by Tc/T and then
to fix the prefactors appeared in those lines from the fitting with the simulation results on the SW binary mixture A80B20
and SiO2 with the NV potential. Thus, one can find the following universal functions for fragile liquids and strong liquids:

ℓl(T )qm = Al
[
Bl (Tc/T )−1/3

− 1
]
, (38)
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Fig. 8. (Color online) A scaled mean-displacement ℓqm versus scaled inverse temperature Tc/T for fragile liquids. The symbols (□) indicate the length ℓ
obtained from the simulations on Al2O3 [45,46], where qm = 2.7 (Å) and Tc ≃ 1947.8 (K), (•) from the simulations on the SWbinarymixture A80B20 [44–46],
where qmσ = 7.25 and Tc ≃ 0.500, (♢) from the simulations on the LJ binary mixtures A80B20 [47,48], where qmσ = 7.25 and Tc ≃ 0.402, and (⊙) from
the simulations on the LJ Brown binary mixtures A80B20 [57], where qmσ = 7.25 and Tc ≃ 0.386. The dotted line indicates the liquid line given by Eq. (38)
and the solid line the supercooled line given by Eq. (39). The vertical dotted lines indicate the scaled liquid point Tc/Tl , the scale supercooled point Tc/Ts ,
and the critical point Tc/T = 1 from left to right. The arrow indicates the glass transition point Tc/Tg .

ℓs(T )qm =
1

As[BsD̃(Tc/T )−µ/2 − 1]
, (39)

where the prefactors Ai and Bi are listed in Table 2. As discussed in Refs. [34,35], the power exponent of D̃ depends on the
systems. In fact, near the critical point we have D̃(Tc/T ) ∝ (1− Tc/T )10/3 for fragile liquids and D̃(Tc/T ) ∝ (1− Tc/T )11/3 for
strong liquids, while Eq. (31) holds for hard-sphere fluids. Thus, we obtain ℓs(T ) ∝ D̃µ/2 ∝ (1 − Tc/T )1/3 for both types of
liquids, while ℓs(φ(δ)) ∝ (1 − φ(δ)/φc(δ))0.2 for hard-sphere fluids.

In Fig. 8, the scaled mean-displacement ℓqm is plotted versus scaled inverse temperature Tc/T for two different fragile
systems, A80B20 and Al2O3. In a liquid state [L] for Tl ≥ T ≥ Ts the simulation results are described by the liquid line given
by Eq. (38) well within error, while in a supercooled state [S] for Ts ≥ T ≥ Tg they also obey the supercooled line given
by Eq. (39) well within error. Here Tl is a liquid temperature, Ts a supercooled temperature, and Tg (> Tc) a glass transition
temperature, where Tc/Tl ≃ 0.354, Tc/Ts ≃ 0.600, and Tc/Tg ≃ 0.949. For comparison, the displacement obtained from
the simulations on the LJ binary mixtures A80B20 [47,48] and the LJ Brown binary mixtures [57] are also plotted. They are
shown to be described by Eqs. (38) and (39) within error. As discussed in Ref. [33], however, we note here that in [L] there
exists a difference between a mean-displacement in molecular systems and that in suspensions. This is mainly because the
short-time dynamics is governed by a ballistic motion in molecular systems, while it is done by a diffusion in suspensions.
Hence the values of the prefactors Aℓ and Bℓ are different in both systems. On the other hand, in [S] both results obey Eq. (39)
well within error. This is because the dynamics at β stage is governed by the same caging mechanism in both systems. In
Fig. 9, the scaled mean-displacement ℓqm is also plotted versus scaled inverse temperature Tc/T for SiO2 with two different
potentials, the BKS potential and the NV potential. In a liquid state [L] both results are well described by the liquid line given
by Eq. (38) up to Tc/Ts within error, while in a supercooled state [S] they obey the supercooled line given by Eq. (39) well up
to Tc/Tg within error, where Tc/Ts ≃ 0.645 and Tc/Tg ≃ 0.848.

4. A length cutoff

In this section,we discuss the control parameterλ dependence of cutoff b, which is obtained by solving the TMCT equation
numerically. Then, we explore how it is related to the characteristic length ℓ(λ).

In order to solve the TMCT equation, one needs the static structure factor S(q). Inmost glass-forming liquids, however, the
wavevector dependence of S(q) is given only numerically. Hence the numerical calculation of the TMCT equation is not easy
to do in general. On the other hand, for monodisperse hard spheres, the analytic form of S(q) is given by the Percus–Yevick
model [36]. Thus, one can easily find the critical cutoff bc [37,38] and also the cutoff b [31]. In this paper, therefore, we
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Fig. 9. (Color online) A scaled mean-displacement ℓqm versus scaled inverse temperature Tc/T for strong liquids. The symbols (□) indicate the length ℓ
obtained from the simulations on SiO2 [45,46] with the NV potential [56], where qm = 1.55 (Å) and Tc ≃ 2544.2 (K), and (•) from the simulations on
SiO2 [45,46] with the BKS potential [55], where qm = 1.55 (Å) and Tc ≃ 2876.1 (K). The dotted line indicates the liquid line given by Eq. (38) and the solid
line the supercooled line given by Eq. (39). The details are the same as in Fig. 8.

focus only on the monodisperse hard spheres. However, we should mention here that if S(q) is known for the other systems,
exactly the same approach as that employed here is directly applicable to them.

We first discuss the critical pointφc(0). By solving Eq. (15), one can first obtain the critical volume fractionφc(0) ≃ 0.5817
for b ≤ bc , where the maximum critical cutoff bc is given by σ/bc = 27. We note here that in the previous paper [37] the
same critical value φc(0) has been found at σ/b = 40. As mentioned before, this result is reasonable because the critical
value does not change for b ≤ bc . Next, we solve the TMCT equation given by Eq. (10) numerically for φ < φc . Here we note
that the TMCT equation contains two unknown parameters, the damping constant γ and the cutoff b. Firstly, the parameter
γ is fixed as follow. Since the nonlinear term in Eq. (18) is neglected for a short time of order τγ , M2(t) obeys

M2(t) ≃ 6v2th(γ t − 1 + e−γ t )/γ 2. (40)

Hence the value of γ is found so that Eq. (40) coincides with the simulation results at least up to a time scale of order τf ,
where τγ < τf . Secondly, the cutoff b is fixed so that the long-time self-diffusion coefficient DL

s given by Eq. (20) coincides
with the simulation results.

In theMD simulations onmonodisperse hard spheres, however, there is no diffusion data available in a supercooled state
for φ ≥ φs because the crystallization occurs. On the other hand, the numerical solutions obtained by using the PY static
structure factor do not show any crystallization. Hence one can in principle find any numerical solutions up to the critical
point φc . In order to obtain the simulation results for higher volume fractions, we use the universality discussed in Section
2.3. In fact, by using Eq. (32), one can shift the simulation results obtained for polydisperse hard spheres (δ ̸= 0) to those
for monodisperse ones. In Figs. 10 and 11, the damping constant γ and the displacement ℓ obtained for a wide range of φ
by employing such a universality are plotted versus φ(0) in a monodisperse unit, respectively. As φ increases, γ increases
monotonically up to φg (0)(≃ 0.580). By using such fitting values of γ and the simulation results for DL

s , one can in principle
solve the TMCT equation (10) with the PY static structure factor numerically. However, it is technically hard to solve it
even numerically because of the double integrals in the memory term. Therefore, we start from the following original TMCT
equation instead [28–31]:

∂2Kα(q, t)
∂t2

=
q2v2th
Sα(q)

− γ
∂Kα(q, t)
∂t

−

∫ t

0
ds∆ϕα(q, t − s)

∂

∂s
Kα(q, s). (41)

As shown in Ref. [31], Eq. (41) is easily obtained by making an approximation (A2) given by fα(q, τ )/fα(q, s) = 1 in Eq. (10).
Here we note that the critical point obtained by Eq. (41) is the same as that obtained by Eq. (10) [31]. One can now solve
Eq. (41) numerically under the fixed values of γ and DL

s . In Fig. 12, the inverse scaled length cutoff (bqm)−1 is thus plotted
versus φ in a monodisperse unit. Here the cutoff b(φ) is obtained by using the simulation results for φ < φg and is shown
to decrease as φ increases. For φ ≥ φg , however, the TMCT equation cannot be used to find b(φ) since the system is out of
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Fig. 10. (Color online) A scaled damping constant γ t0 versus volume fraction φ in a monodisperse unit. The symbols (•) indicate the fitting values obtained
from the simulation results formonodisperse hard spheres. The symbols (□) indicate the fitting values obtained from the simulation results for polydisperse
hard spheres at δ = 0.15, where the volume fraction φ(δ = 0.15) is shifted to φ(0) by using Eq. (32). The details are the same as in Fig. 6.

Fig. 11. (Color online) A scaled characteristic length ℓ/σ versus volume fraction φ in a monodisperse unit. The symbols (□), (◦), and (♢) indicate the fitting
values obtained from the simulation results at δ = 0.0, 0.06, and 0.15, respectively, where the volume fraction φ(δ) is shifted to φ(0) by using Eq. (32). The
details are the same as in Fig. 7.

equilibrium. We should note here that the maximum critical cutoff bc is found directly from Eq. (15) independently of the
simulation results, leading to σ/bc = 27 and (bcqm)−1

= 3.6726, where qmσ = 7.3518 at φ = φc(0). In a supercooled state
[S], the cutoff b is thus shown to satisfy q−1

m > ℓ ≥ b ≥ bc .
Finally, we check how b is physically related to ℓ, although it satisfies the inequality ℓ ≥ b in [S]. As discussed in Ref. [31],

the approximation (A2) made in Eq. (10) to obtain Eq. (41) causes a discrepancy between the simulation results and the
numerical solutions. In Fig. 13, such a discrepancy is clearly seen for M2(t) with δ = 0.15 at β stage in [S]. The deviation
of the TMCT solutions from the simulation results at β stage becomes larger and larger as φ(0.15) increases from 0.510,
while for φ(0.15) ≤ 0.510 there is no deviation since the memory term is negligibly small [31]. One can use Eq. (25) for the



546 M. Tokuyama, T. Narumi / Physica A 514 (2019) 533–548

Fig. 12. (Color online) A inverse scaled length cutoff (bqm)−1 and an inverse scaled displacement (ℓqm)−1 versus scaled volume fraction φ/φc (0) in a
monodisperse unit. The symbols (•) indicate the inverse scaled cutoff (bqm)−1 obtained by solving the TMCT equation with the PY static structure factor
and (♢) the inverse scaled maximum critical cutoff (bcqm)−1(= 3.6726). The symbols (□) indicate the inverse scaled length (ℓqm)−1 obtained from the
simulations on hard spheres at δ = 0, 0.06, and 0.15. The dashed line indicates the gas line (ℓf qm)−1 given by Eq. (33), the dotted line the liquid line
(ℓlqm)−1 given by Eq. (34), and the solid line the supercooled line (ℓsqm)−1 given by Eq. (37). The horizontal dot-dashed line indicates the first peak position
bqm = 1 of the PY static structure factor S(q). The details are the same as in Fig. 11.

Fig. 13. (Color online) A log–log plot of the scaled mean-square displacement M2(t)/σ 2 versus scaled time t/t0 for hard-sphere fluids with δ = 0.15 at
φ = 0.510 [L], 0.560 [S], and 0.590 [S] from left to right. The solid lines indicate the simulation results forM2(t) and the dotted lines for the TMCT solutions.
The symbols (•) indicate the mean-free time τf and (□) the β-relaxation time τβ .

TMCT solutions to find the displacement ℓTMCT in [S]. Then, it is shown that ℓTMCT is always smaller than ℓ and coincides with
b within error. Thus, it turns out that a small difference between ℓ and b in [S] results from the approximation (A2). This
means that if one can solve Eq. (10) itself, such a difference may disappear, leading to b = ℓ. Similarly to Eq. (37), one can
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Fig. 14. (Color online) A plot of the scaled length ξ4/σ versus scaled control parameter λ/λc . The symbols indicate the simulation results on (♢) the LJ
binary mixture [21] with Tc ≃ 0.570, (□) the LJ binary mixture [22] with Tc ≃ 0.406, (◦) the Wahnström mixture [23] with Tc ≃ 0.555, (+) the LJ binary
mixture [24] with Tc ≃ 0.359, (▽) the Kob–Andersen lattice glass model [25] with φc ≃ 0.467, and (△) the polydisperse hard spheres of N = 1372 [26]
with φc ≃ 0.5853. The symbols (⊙) indicate the experimental results for all particles of binary colloids [27] with φc ≃ 0.5819. Here ℓ0 = σ , except that
ℓ0 = σ/2 in [22]. The solid line indicates the supercooled line given by Eq. (43) with A4 ≃ 3.7888 and B4 ≃ 0.9538 and the dotted line with A4 ≃ 4.2939
and B4 ≃ 0.8386, where the asymptotic forms D̃(Tc/T ) = (1 − Tc/T )10/3 and D̃(φ/φc ) = (1 − φ/φc )2 in [S] have been used to obtain Eq. (43). The arrows
indicate the supercooled point; (↓) Tc/Ts ≃ 0.6 and (↑) φs/φc ≃ 0.913.

also show that b obeys the same power law as that for ℓs and finds

b(φ(δ))qm(δ) =
1

Ab[BbD̃(φ(δ))−µ/2 − 1]
, (42)

where Ab ≃ 0.2872 and Bb ≃ 4.6341. Near the critical point, therefore, we obtain b(φ) ∝ D̃µ/2 ∝ ℓs(φ). Thus, we conclude
that b in [S] must be physically identical to ℓ itself. On the other hand, in [Gas] and [L] we have b > ℓ. Hence b is independent
of the characteristic lengths in both states and just plays a role in adjusting a magnitude of nonlinear memory term so that
the calculated diffusion coefficient coincides with that of the simulations. The nonlinear memory term is thus shown to play
a crucial role only in [S] but not in [Gas] and [L]. We note here that the similar situation has been already discussed for two
types of glass-forming materials based on the simplified TMCT equation [29,30].

5. Summary

In this paper, we have focused only on the characteristic length at β stage. We have proposed a systematic method how
to find a reasonable value of the cutoff b(λ) contained in the nonlinear memory function of TMCT equation. As a simple
example, the TMCT equation has been calculated numerically by using the PY static structure factor, where the cutoff b is
set so that the calculated long-time self-diffusion coefficient DL

s coincides with that obtained from the simulation results
for hard spheres. Thus, the volume fraction dependence of b has been obtained consistently. In order to clarify the physical
meaning of b(φ), the mean displacement ℓ(φ) in the β-relaxation stage has been also introduced based on the mean-field
theory, independently of b. Both in a gas and a liquid states ℓ(φ) has been shown to be a characteristic length since it is
related to the mean-free path and the inter-particle distance, respectively. In those states, however, b(φ) has been shown
to be physically independent of ℓ(φ). On the other hand, in a supercooled state ℓ(φ) and b(φ) have been shown to obey the
same power-law form. Thus, it has been concluded that b is physically identical to the characteristic length ℓ itself at β stage.

Finally, we briefly mention the power-law form of the correlation length ξ4 for dynamic heterogeneity at α stage in [S]
and compare it with that of ℓs at β stage. The four-point dynamic correlation length ξ4(λ) has been numerically obtained
from the simulations [21–26]. Analyzing those numerical results by using Eqs. (30) and (39), one can then obtain

ξ4(λ) = A4

[
B4D̃(λ/λc)−µ/2 − 1

]
ℓ0, (43)

where A4 and B4 are fitting parameters to be determined and ℓ0 an adjustable length unit. In Fig. 14, the simulation results for
ξ4 are plotted versus scaled control parameter λ/λc together with Eq. (43). Those results are thus shown to bewell described
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by Eq. (43) within error. For comparison, the experimental results for ξ4(φ) on binary colloids [27] are also plotted in Fig. 14.
They are also shown to obey Eq. (43) within error. Since ξ4 ∝ D̃−µ/2 near the critical point, from Eqs. (39) and (43) one can
find an interesting relationship between ℓs and ξ4 as

ξ4(λ) ∝ ℓs(λ)−1
∝ D̃−µ/2. (44)

This relation may suggest that as time goes on from β stage to α stage in [S], the cooperative phenomena between many
shrinking cages start to play an important role in causing dynamic heterogeneity. In fact, such a gathering of cages has been
discussed in the previous papers [11–15]. Using Eqs. (30) and (44), one can then write τα as

τα(λ) ∝ ξ4(λ)2/D̃(λ/λc). (45)

This expression is in general expected to hold for the self-diffusion process of any glass-forming materials. This will be
discussed elsewhere together with a derivation of a TMCT equation for a new relevant variable with a new cutoff at α stage.
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