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Slow diffusive structure in Nikolaevskii turbulence
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Weak turbulence has been investigated in nonlinear-nonequilibrium physics to understand universal char-
acteristics near the transition point of ordered and disordered states. Here the one-dimensional Nikolaevskii
turbulence, which is a mathematical model of weak turbulence, is studied theoretically. We calculate the velocity
field of the Nikolaevskii turbulence assuming a convective structure and carry out tagged-particle simulations in
the flow to clarify the Nikolaevskii turbulence from the Lagrangian description. The tagged particle diffuses
in the disturbed flow and the diffusion is superdiffusive in an intermediate timescale between ballistic and
normal-diffusive scale. The diffusion of the slow structure is characterized by the power law for the control
parameter near the transition point of the Nikolaevskii turbulence, suggesting that the diffusive characteristics
of the slow structure remain scale invariant. We propose a simplified model, named two-scale Brownian motion,
which reveals a hierarchy in the Nikolaevskii turbulence.
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I. INTRODUCTION

Turbulence appears in all areas of nature, from microscopic
to macroscopic levels. Most studies of turbulence have tar-
geted fully developed turbulence, which is regarded as a flow
regime characterized by a strong velocity disturbance in the
spatiotemporal region. Highly enhanced transport properties
are measured as turbulent diffusion or chaotic advection [1,2].
On the other hand, since the pioneering work by Reynolds [3],
research into what happens at the beginning of disturbance
is still active [4–6]. Weak turbulence introduced by Man-
neville [7] derived from the study to understand the transition
between ordered and disordered states. The pattern in weak
turbulence is disordered as a whole but maintains local order.
For example, the local order is convection rolls in the turbulent
transition of convective systems; in fact, weak turbulence is
experimentally obtained in nematic electroconvective systems
[8,9]. Weak turbulence is modeled by deterministic chaos
for confined systems or spatiotemporal chaos for extended
systems. In this paper we study a type of spatiotemporal
chaos, Nikolaevskii turbulence, from the Lagrangian descrip-
tion and aim to understand the transport characteristics of
weak turbulence in a statistical-physics manner.

Nikolaevskii turbulence is defined as a spatially and tem-
porally chaotic solution of the Nikolaevskii equation

∂φ(x, t )

∂t
+ [∇φ(x, t )]2 = −∇2[ε − (1 + ∇2)2]φ(x, t ), (1)

with the control parameter ε. The one-dimensional case is
equivalent to the model for longitudinal seismic waves pro-
posed by Nikolaevskii [10]. Tribelsky and Tsuboi showed that
the solutions bifurcate supercritically from a spatially uniform
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state to a turbulent regime, i.e., Nikolaevskii turbulence [11].
The Nikolaevskii equation is a pattern-forming system with
the Galilean symmetry x → x + Ut , ∇φ → ∇φ + U [12],
or with the symmetry under the transformation φ → φ +
const [11]. This symmetry indicates the infinite relaxation
time for the overall translational movement of φ. It leads
to a long-wavelength neutral mode, i.e., Nambu-Goldstone
mode [13,14], which interacts with short-wavelength modes
to make spatially periodic steady solutions unstable. From
the viewpoint of phase dynamics, Eq. (1) is derived as a
phase equation of an oscillatory reaction-diffusion system
[15–17]. In experiments, a kind of weak turbulence seen in
nematic electroconvective systems, called soft-mode turbu-
lence [18–20], is considered to correspond to the Nikolaevskii
turbulence.

Tanaka proved that Nikolaevskii turbulence is equivalent
to a type of spatiotemporal chaos exhibited in a complex
Ginzburg-Landau equation with nonlocal coupling [16]. This
implies that a nonlocal structure can emerge in disorder flow
in Nikolaevskii turbulence. Indeed, the Matthews-Cox equa-
tions, which are the amplitude equations derived from the
Nikolaevskii equation, show a global structure characterized
by the coexistence of disorder and an amplitude death state
[21]. Sakaguchi and Tanaka investigated such a structure in
Nikolaevskii turbulence [21], while the properties have been
left unclear.

Studies for fluid dynamics are divided roughly into Eu-
lerian or Lagrangian description. Tanaka and Okamura in-
vestigated the modal and total time correlation functions for
∂φ/∂x of the Nikolaevskii equation [22]. Their study is based
on the Eulerian description. However, it is inconvenient to
study transport phenomena; instead, it is more convenient to
use the Lagrangian description. We study the one-dimensional
Nikolaevskii equation through numerical simulation of tagged
particles and focus on diffusive properties of the tagged parti-
cles. The diffusion in fully developed turbulence is normal at
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any macroscopic timescales [23], while in weak turbulence it
is expected to be not normal because of local order. Thus, the
study of anomalous diffusion will lead to an understanding of
the characteristics of weak turbulence.

The present paper is organized as follows. Section II
explains the Nikolaevskii turbulence and the numerical sim-
ulation of tagged-particle dynamics. Section III shows the
results of the particle dynamics. To understand the results,
a schematic model is investigated analytically in Sec. IV.
Section V summarizes this paper.

II. MODEL AND NUMERICAL CALCULATION

We study the one-dimensional Nikolaevskii equation for
φ = φ(x, t ),

∂φ

∂t
+

(
∂φ

∂x

)2

= − ∂2

∂x2

[
ε −

(
1 + ∂2

∂x2

)2]
φ. (2)

The dispersion relation of Eq. (2) is

λ = k2[ε − (1 − k2)2]. (3)

In addition to the Nambu-Goldstone mode at k = 0, the
unstable mode around k = 1 appears for ε > 0. Since it
interacts with the long-wavelength mode, any steady periodic
solutions do not appear; instead, the chaotic solutions emerge
supercritically at ε = 0 [11].

We numerically solved Eq. (2) under a periodic bound-
ary condition with the system length L = 212 and the space
increment �x = 2−1. Although the behavior is affected by
the value of L especially at small ε, it was confirmed that
L is independent of the results of the ε range shown in this
paper [24]. The equation was solved by a pseudospectral
method and the time stepping was done by the exponential
time differencing scheme of the second-order Runge-Kutta
methods [25] with the time increment �t = 10−2. The zero
mode was not taken into account in numerical calculations
as we did not consider the translational motion of the whole
system [11]. The initial condition of φ was the perturbation
around φ = 0 and the system waits to reach a steady state
before sampling, with a waiting time of tw = 105.

The convective system is a nonlinear-nonequilibrium sys-
tem with a periodic structure. Herein we regard the modes
around k = 1 of the Nikolaevskii equation as convective
modes. This makes it possible to compare our theoretical re-
sults with the experimental results of the convection systems.
In fact, soft-mode turbulence, which is a weak turbulence cor-
responding to Nikolaevskii turbulence, is found in a nematic
electroconvective system. We then expand the system in the
z direction in the range 0 � z � π , so symmetric convective
rolls can exist on the x-z plane. If we suppose that φ is the
phase, the velocity in the x direction should be proportional to
∂φ/∂x, which is the local wave number [26]. Thus, to obtain
the convective velocity field v = v(x, z, t ) from φ = φ(x, t ),
we employ

v = (vx, vz ) =
(

−∂φ

∂x

dF

dz
,
∂2φ

∂x2
F

)
, (4)

FIG. 1. Profile of (a) φ and (b) the corresponding velocity field
in the case φ = cos x.

where

F (z) =
(

2z

π

)2(
2 − 2z

π

)2

(5)

is a function characterizing convection with the rigid bound-
ary condition in the z direction [27]. The velocity field satisfies
the condition of incompressibility: ∇ · v = 0. Figure 1 shows
the velocity field on the x-z plane in the case φ(x, t ) = cos x
as an example.

Under the condition that the mass of the tagged particle
is small and/or the friction coefficient is large, the tagged-
particle velocity V (t ) = (Vx(t ),Vz(t )) is equivalent to the
velocity field, that is,

V (t ) = (vx(X (t ), Z (t ), t ), vz(X (t ), Z (t ), t )), (6)

where X (t ) = (X (t ), Z (t )) denotes the tagged-particle posi-
tion. As the velocity field v is obtained discretely, the tagged-
particle velocity V (t ) is calculated as

V (t ) = (1 − p)v(x∗, Z (t ), t ) + pv(x∗ + �x, Z (t ), t ), (7)

where x∗ is a grid point satisfying x∗ � X (t ) � x∗ + �x
and p = [X (t ) − x∗]/�x. One can obtain the tagged-particle
dynamics from the solutions of the Nikolaevskii turbulence
through the evolution equation

X (t + �t ) = X (t ) + V (t )�t . (8)

An example of how a tagged particle moves on the x axis is
shown in Fig. 2.

The tagged particle is set as a rigid circle to keep the
particle from sticking to the boundary. The radius is a = 0.2,
which was set up corresponding to the experimental condi-
tions [28]. Note that the value has little effect on the following
simulation results. The boundary condition of the tagged-
particle dynamics is periodic in the x direction and rigid in
the z direction, that is, the tagged particle undergoes elastic
collision with the boundary in the z direction.
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FIG. 2. Spatiotemporal pattern and tagged-particle trajectory at
ε = 0.1. The color indicates the value of φ(x, t ). The white line
represents the trajectory of a tagged particle.

III. RESULTS

A. Mean-square displacement

Turbulent flow diffuses tagged particles. The diffusive
property can be characterized by the mean-square displace-
ment. We take account of movement only in the x direction,

M2(τ ) = 〈|X (t + τ ) − X (t )|2〉, (9)

where the angular brackets denote the sample average in
the steady state. Figure 3 shows the simulation results of
the mean-square displacement, each of which is obtained by
averaging 107 time-series data. The computation in this work
has been done using the supercomputer system ITO, Kyushu
University. The dynamics is ballistic in the shortest timescale.
We consider an effective temperature, which is proportional
to the mean-square velocity 〈V 2

x 〉, as an indicator of the
randomness that tagged particles receive. Figure 4 indicates
that T is well described by the power law as

T ∼
{
εαl (low ε)

εαh (high ε),
(10)

FIG. 3. The x-direction mean-square displacement calculated
from tagged-particle dynamics. The solid lines represent the nu-
merical results of ε = 0.001 (black), 0.004 (red), 0.01 (green), 0.04
(blue), 0.1 (purple), 0.4 (gray), and 0.8 (brown), from bottom to top.

FIG. 4. The ε dependence of the mean-square velocity of the
ballistic motion in the shortest timescale. The blue dashed line and
red solid line represent the power-law fitting (10).

with αl = 1.50 ± 0.00 and αh = 1.86 ± 0.02. As Tanaka has
stated, from the viewpoint of the energy spectrum, solutions
of the Nikolaevskii equation at ε > 0.1 are qualitatively indis-
tinguishable from those for Kuramoto-Sivashinsky turbulence
[29]. Nugroho et al. also show the crossover behavior around
ε � 0.1 [30]. Thus, the power αl is a feature of the Niko-
laevskii turbulence and the power αh is that of the Kuramoto-
Sivashinsky-type turbulence.

Matthews and Cox explained theoretically a self-consistent
scaling as ∂φ/∂x ∼ ε3/4A(X, T ) exp(ix) + c.c. + ε f (X, T ),
with T = εt and X = ε1/2x. The square of the leading term
is of order ε3/2, which agrees with αl.

Hidaka et al. measured the effective temperature of the
soft-mode turbulence and revealed that the temperature is
proportional to the control parameter εexpt in the experiment
[31]. Our simulation result thus implies the relationship of
the control parameters between the soft-mode turbulence and
the Nikolaevskii turbulence as εexpt ∼ ε2/3, but more detailed
consideration is needed.

B. Diffusion coefficient

To study the dynamics except for the shortest, i.e., ballistic,
timescale, we calculate the time-dependent diffusion coeffi-
cient

D(τ ) = M2(τ )

2τ
. (11)

We confirm that every D(τ ) at ε � 0.003 converges at the
longest timescale. This means that the tagged particle nor-
mally diffuses at the longest timescale. On the other hand,
for ε < 0.003, D(τ ) gently increases with time within our
observation time τ � 105. We believe that chaotic charac-
teristics impose that the diffusion type for extremely low ε

also becomes normal, that is D(τ ) becomes a constant, at a
sufficiently long time.

The convergence value of D(τ ) is the long-time diffusion
coefficient DLT = limτ→∞ D(τ ). Figure 5 indicates that DLT

is described by the power law as

DLT ∼
{
εβl (low ε)

εβh (high ε),
(12)
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FIG. 5. The ε dependence of the long-time self-diffusion coef-
ficient. The blue dashed line and the red solid line represent the
power-law fitting (12).

with βl = 0.597 ± 0.011 and βh = 1.46 ± 0.03. We will dis-
cuss the value of βl in Sec. IV C.

C. Anomalous parameter

Diffusion can become anomalous in complex systems,
which is collectively called anomalous diffusion [32]. The
anomalous diffusion is characterized by the anomalous pa-
rameter γ , defined in D(τ ) ∝ τ γ . We investigate the timescale
dependence of γ calculated as

γ (τ ) = d ln D(τ )

d ln τ
. (13)

As shown in Fig. 6, the anomalous parameter decreases
until the time reaches the local minimum, increases until
the time reaches the local maximum, and then decreases
gently to converge to zero. The anomalous parameter for
the conventional Brownian motion monotonically decreases
from limτ→0 γ (τ ) = 1 to limτ→∞ γ (τ ) = 0. We can thus
conclude that the tagged particle in the Nikolaevskii turbu-
lence anomalously diffuses in the intermediate timescale. The

FIG. 6. Anomalous parameter calculated from tagged-particle
dynamics. The solid lines represent the numerical results of
ε = 0.001 (black), 0.004 (red), 0.01 (green), 0.04 (blue), 0.1 (purple),
0.4 (gray), and 0.8 (brown), from right to left.

FIG. 7. (a) Value γpeak of the local maximum of γ (τ ) and (b) time
τpeak when γ (τ ) is a local maximum. The blue dashed lines repre-
sent the power-law fitting. No local maximum appears in γ (τ ) for
ε � 0.7.

local minima are positive for the control parameters we are
investigating.

A notable characteristic of the anomalous parameter in the
Nikolaevskii turbulence is that it has a local maximum at the
intermediate timescale. Focusing on the peak height γpeak, we
find a power law for small ε,

γpeak − 1 ∼ −εζ , (14)

with ζ = 0.106 ± 0.005, as indicated in Fig. 7(a). Further, the
time τpeak at which the anomalous parameter is maximal also
holds for a power-law relation

τpeak ∼ εη, (15)

with η = −0.812 ± 0.025, as indicated in Fig. 7(b). These
results suggest that the origin of anomalous diffusion has a
scale invariance with small ε.

IV. DISCUSSION

A. Two-scale Brownian motion

The simulation results of γ (τ ) show that superdiffusive
motion emerges in an intermediate timescale before reaching
a normal diffusion timescale. We propose a model, two-scale
Brownian motion (2SBM), to explain the superdiffusion as
originating from the slow movement of a nonlocal structure.

A tagged particle in the Nikolaevskii turbulence moves
randomly due to the disturbed flow. We assume that the
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FIG. 8. Anomalous parameter obtained theoretically in 2SBM.
The solid line indicates Eq. (23) and the dashed one Eq. (24). The
values of the parameters are D̃ = 20, τF = 0.1, and τS = 100.

motion driven by the disturbance is described by the Brownian
motion1 and the momentum relaxation time τF is a charac-
teristic time. This timescale stage is called a fast layer. In
addition, we assume that the tagged particle is advected by
a slow diffusive structure, the dynamics of which is described
by the Brownian motion with a slower timescale τS. This stage
is called a slow layer. Since the dynamics of the structure is
ballistic when τ � τS, the inertial force due to the advection
can be neglected. The tagged-particle dynamics is therefore
governed by the stochastic evolution equations

τF
dV F(t )

dt
= −V F(t ) + RF(t ), (16)

τS
dV S(t )

dt
= −V S(t ) + RS(t ), (17)

where the velocity of the tagged particle is V (t ) = V F(t ) +
V S(t ) and RF(t ) and RS(t ) denote the velocity fluctuations for

each layer. It is simply assumed that the fluctuation is white,
i.e., 〈RF(t )〉 = 〈RS(t )〉 = 0, 〈RF(t + τ )RF(t )〉 = 2DFδ(τ )1,
and 〈RS(t + τ )RS(t )〉 = 2DSδ(τ )1, and the different-layer
fluctuations are assumed to be independent, where 1 denotes
the unit matrix and DF and DS are the diffusion coefficients
for each layer.

The mean-square displacement for 2SBM is represented as

M (2S)
2 (τ ) = 〈|X F(τ ) + X S(τ )|2〉, (18)

where

X∗(τ ) =
∫ τ

0
V ∗(t )dt (∗ = F or S) (19)

and the initial position is set as the origin. Because the
different-layer motions are independent, M (2S)

2 (τ ) reduces to

M (2S)
2 (τ ) = 〈|X F(τ )|2〉 + 〈|X S(τ )|2〉. (20)

The evolution equations (16) and (17) lead us to

〈|X∗(τ )|2〉 = 2dD∗

[
τ − τ∗ + τ∗ exp

(
− τ

τ∗

)]
, (21)

where d denotes the space dimensionality. This equation
indicates that the long-time diffusion coefficient of 2SBM is
the summation of the diffusion coefficients for each layer.
Thus, we obtain

M (2S)
2 (τ ) = 2dDFτF

[
(1 + D̃)

τ

τF
+ exp

(
− τ

τF

)
− 1

+ D̃
τS

τF
exp

(
− τ

τS

)
− D̃

τS

τF

]
, (22)

where D̃ := DS/DF denotes the ratio of the diffusion coeffi-
cients.

Through the time-dependent diffusion coefficient (11), the
anomalous parameter for 2SBM can be calculated as

γ (2S)(τ ) =
[
(1 + D̃) − exp

(− τ
τF

) − D̃ exp
(− τ

τS

)]
τ
τS

(1 + D̃) τ
τS

+ τF
τS

exp
(− τ

τF

) − τF
τS

+ D̃ exp
(− τ

τS

) − D̃
− 1. (23)

This representation has a local minimum and maximum under
appropriate parameters and describes the simulation results
of γ (τ ) in a qualitative manner (Fig. 8). Therefore, from
the viewpoint of 2SBM, the appearance of the peak of γ (τ )
indicates the existence of hierarchical layers of the diffusive
process.

As shown in Fig. 6 for higher ε, i.e., the Kuramoto-
Sivashinsky-type turbulence, a gentle peak appears in γ (τ )
at a long timescale �104. Two-scale Brownian motion has not
elucidated this behavior yet.

1The term “Brownian motion” is used in a broad sense, that is, the
concept of Brownian motion is applied to phenomena that can be
separated into a microscopic scale (originally molecular motion) and
a macroscopic scale (originally the motion of colloidal particles).

B. Approximation focusing the local maximum

We next consider an approximated form of Eq. (23) to
analyze the peak values of the anomalous parameter. In
the timescale τ � τF, the mean-square displacement of the
fast layer is represented by normal diffusion: 〈|XF(τ )|2〉 �
2dDFτ . The anomalous parameter for τ � τF is approximated
as

γ (2S)(τ̂ ) � 1 − e−τ̂ − τ̂e−τ̂

(1 + D̃)τ̂ − D̃(1 − e−τ̂ )
D̃, (24)

where τ̂ = τ/τS denotes a normalized time. As shown in
Fig. 8, Eq. (24) well approximates Eq. (23) around the local
maximum. Equation (24) indicates that both the maximal
value γ

(2S)
peak and the normalized time τ̂

(2S)
peak when γ (2S)(τ̂ ) is

maximal depend only on D̃. Further, with the increase of
D̃, τ̂

(2S)
peak monotonically decreases and γ

(2S)
peak monotonically
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TABLE I. Values of the power-law index for the Nikolaevskii turbulence.

T Temperature αl 1.50±0.00
DLT Long-time diffusion coefficient βl 0.597±0.011
γpeak Peak value of the anomalous parameter ζ 0.106±0.005
τpeak Peak time of the anomalous parameter η −0.812±0.025

τS Characteristic time of the slow layer μS = −ζ + η −0.918±0.030
DS Diffusion coefficient of the slow layer νS = −ζ + η + αl 0.58±0.03
τF Characteristic time of the fast layer μF = ζ + η −0.706±0.030
DF Diffusion coefficient of the fast layer νF = ζ + η + αl 0.79±0.04

approaches 1. These facts support the peak analysis of γ (τ )
being useful to extract the diffusive properties of the hierar-
chical layers.

For large D̂, τ̂
(2S)
peak is analytically derived from Eq. (24) as

the power law

τ̂
(2S)
peak �

√
6D̃−1/2, (25)

and then

γ
(2S)
peak � 1 − 2

√
6

3
D̃−1/2. (26)

These indicate that τpeak/τS ∼ 1 − γpeak.
Two-scale Brownian motion does not perfectly describe

the simulation results; for example, although the peak of
γ (τ ) has a shoulder as shown in Fig. 6, 2SBM cannot de-
scribe it. Although a more multilayered model might improve
the quantitative description, it is unclear whether the more
precise description helps in understanding the Nikolaevskii
turbulence. One should recall that 2SBM is based on several
assumptions such as a Markov property on each layer, the
scale separation τF � τS, and the Einstein relation. In this
paper, we do not take account of multilayering models and
instead focus on 2SBM to reveal the hierarchical structure in
Nikolaevskii turbulence.

C. 2SBM analysis for Nikolaevskii turbulence

The preceding sections suggest that the local maximum of
γ (τ ) contains essential information. We analyze the simula-
tion results of the Nikolaevskii turbulence from a 2SBM view-
point. Assuming the power-law relation between the control
parameter ε and the ratio D̃ of the different-layer diffusion
coefficients, we obtain

D̃ ∼ ε−2ζ , (27)

τpeak/τS ∼ εζ (28)

from Eqs. (14), (15), (25), and (26). As the diffusion coef-
ficients for each layer are zero at ε = 0, the negative value
of the power in Eq. (27) means that the slow-layer diffusion
is dominant at sufficiently low ε. Figure 7(b) allows us to
evaluate the slow relaxation time as

τS ∼ εμS , (29)

with μS = −ζ + η = −0.918 ± 0.030. Because of the Ein-
stein relation, we obtain the diffusion coefficient of the slow
layer as

DS ∼ τST ∼ ενS , (30)

with νS = μS + αl = 0.58 ± 0.03. The values of the power-
law index are summarized in Table I including the fast-layer
diffusion characteristics τF and DF. The fact that βl = νS

within error also supports the fast-layer diffusion being
weaker at a sufficiently low ε region. On the other hand, in a
higher ε region, i.e., Kuramoto-Sivashinsky-type turbulence,
the diffusion coefficient DLT also satisfies the power law;
however, it is not equivalent to DS because the fast-layer
fluctuation is not negligible.

A successful description by 2SBM suggests that a slow dif-
fusive structure exists in the Nikolaevskii turbulence at small
ε. Sakaguchi and Tanaka showed numerically the amplitude
death domain in the Matthews-Cox equations [21]. Although
it is unclear whether such domains exist in the Nikolaevskii
turbulence, a region separated by the domains might cor-
respond to the slow structure. Nonlocal structures in weak
turbulence have been observed experimentally [13,33–36]
and theoretically [37–42]. We consider that the existence of
such structures can universally characterize the spatiotem-
poral chaos, as stated in Ref. [36]. The power-law index
calculated in this paper will be useful to study the universal
feature of weak turbulence.

The slow diffusive structure can explain the existence of
a characteristic length of the Nikolaevskii turbulence [22,24].
The length corresponds to the size of the slow structure, and
small systems smaller than the slow structure size show be-
havior different from that of large systems. The investigation
of the system size dependence might lead to an understanding
of the ε dependence of the slow structure size.

V. SUMMARY

We have studied theoretically the one-dimensional Niko-
laevskii turbulence, which is a mathematical model of soft-
mode turbulence observed experimentally in nematic electro-
convective systems. To understand the properties from the
viewpoint of the Lagrangian description, we have simulated
numerically the tagged-particle dynamics in the Nikolaevskii
turbulence, where the velocity field has been obtained by as-
suming the convective structure. The tagged particle diffuses
due to the turbulent flow, and the anomalous diffusion has
been characterized by the mean-square displacement (Fig. 3)
and the anomalous parameter (Fig. 6). The anomalous pa-
rameter has a local maximum at the intermediate timescale.
Further, we have found that slow diffusion is characterized
by a power law for the small ε, suggesting that the diffusive
property of the structure remains scale invariant. We have pro-
posed a simplified model, referred to as 2SBM, to understand
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the specific feature. A particle in 2SBM is assumed to move
by two mechanisms: fast turbulent fluctuation and advection
by a slow diffusive structure. The successful description of
the local maximum by 2SBM suggests the existence of a
hierarchy in the Nikolaevskii turbulence. In addition, 2SBM
has been verified quantitatively by comparing the indices of
the diffusion coefficients [Eqs. (12) and (30)]. Since such
nonlocal structures have been observed in weak turbulence
experimentally and theoretically, the power-law characteris-
tics of the slow diffusive structure might help to understand
the universality of the weak turbulence and then will lead to
an understanding of the transition to disordered states.

Although we have revealed the diffusive property of the
structure, it has not been clarified what the slow structure is.

We speculate that the slow structure relates to the Nambu-
Goldstone mode. To specify how the zero-wave-number mode
affects the slow structure, a possibility is to study the damped
Nikolaevskii equation [14,43], which contains friction terms
that reduce the long-range mode. It would also be interesting
to research three-dimensional systems, i.e., to solve the two-
dimensional Nikolaevskii equation, in terms of correspon-
dence with experiments. This is left for future study.
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