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Comparison of mode-coupling theory with molecular dynamics simulations
from a unified point of view
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We study the tagged-particle dynamics by solving equations of the mode-coupling theory (MCT). The
numerical solutions are compared with results obtained by the molecular dynamics (MD) simulations from
a unified point of view proposed by Tokuyama [Phys. Rev. E 80, 031503 (2009)]. We propose a way of
comparison in which the reduced long-time self-diffusion coefficient is used to characterize states of the system.
The comparison reveals that the tagged-particle dynamics calculated from MCT qualitatively deviates from that
obtained by MD. Our results suggest that the deviation originates from the starting equation of MCT.
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I. INTRODUCTION

Glass transition is an unsolved problem in condensed
matter physics [1-3]. As systems approach glass transition,
their dynamic properties such as the diffusion coefficient and
viscosity change drastically, showing slow dynamics, while
the static properties hardly do. Slow dynamics is thought to
originate from the cooperative motion [4—7]. In fact, the critical
phenomenon in which cooperative motion plays an significant
role shows the critical slowing down near the critical point [8].
One of the theories for explaining the critical phenomenon is
the mode-coupling theory (MCT) [9]. This theory explicitly
considers nonlinear effects to explain the dynamics near the
critical point. In the 1980s, MCT was first applied to the study
of supercooled liquids [10,11] to derive the equation of motion
for relaxation functions such as the intermediate scattering
function. Nowadays, MCT is the most well-known theory for
studying the dynamics of supercooled liquids. It predicts the
nonergodic transition from the ergodic state to the nonergodic
state in which the relaxation function converges to nonzero
value even in the long-time limit.

The MCT equations have been solved numerically for
several models [12-20], and hence have been widely used
to explain results of experiments and simulations [21,22].
Nevertheless, some challenges remain. A problem is that
MCT solutions do not agree with the simulation results in the
cage region as discussed in the previous study [23]. Another
problem is that MCT underestimates control parameters such
as the inverse temperature and the volume fraction. Although
it is unclear whether the nonergodic transition can be regarded
as the ideal glass transition or not, the nonergodic transition
always occurs at a higher temperature than the glass transition
temperature [14].

The comparison of MCT solutions with molecular dynam-
ics (MD) results is a strategy to reveal where problems of MCT
are. One should not compare them at the same temperature
because the underestimation of the control parameters makes
their states different even at the same temperature. We need
a unified point of view to compare MCT solutions with MD
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results in the same state. Our approach in comparing MCT
with MD is based on the mean-field theory (MFT) [24], which
predicts the dynamics of a tagged particle. MFT suggests that
the long-time self-diffusion coefficient D% can determine the
state of the system [25]. This means that the dynamics in the
different systems coincides with each other if the value of D is
the same. Thus, MCT solutions can be compared consistently
with the simulation results at the same D%.

In this paper, we compare the numerical solutions of
MCT equations with the MD results for Kob-Andersen binary
mixtures [26] to study the tagged-particle dynamics. Kob,
Nauroth, and Sciortino have already studied the same model
by solving the MCT equations numerically [13-16]. However,
our comparison is done based on Ref. [25]. In addition, we offer
a method of comparison in which the reduced long-time self-
diffusion coefficient D" is used to scale out the ballistic motion.

II. MODEL

We consider a three-dimensional system of volume V. The
system consists of two kinds of particles, A and B, where the
ratio of the number of particle is given by Na:Ng = 4:1. Here
the radius of A is larger than that of B, but their masses m
are the same. The control parameter is given by the inverse
temperature 1/7. The number density p = N/V is fixed,
where N denotes the total number of particles: N = N + Ng.
The interaction among particles is represented by the binary
Lennard-Jones potential
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where {«,8} € {A,B}. We employ the Kob-Andersen model
[26] 8AB/8AA = ].5, 8BB/8AA = 050, GAB/GAA = 080,
oB/oas = 0.88,and p = 1.20044 .

MCT predicts the dynamics of supercooled liquids with
some approximations [22,27] and can treat not only coherent
dynamics but also incoherent (tagged-particle) dynamics
[14,28-30]. We focus on the tagged-particle dynamics such
as the self-intermediate scattering function
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where N, denotes the number of particle «, the summation
with () the sum up only for particle o, and X;(¢) the position
vector of ith particle at time 7. F(*)(¢,7) can be expanded in
powers of g as
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where M(®(t) is defined as
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Mé“) (¢) is the mean-square displacement, and Mfta)(t) is the
mean quartic displacement.

To obtain the tagged-particle dynamics numerically, the
intermediate scattering function F“%)(g.t) is first solved, in
which the partial static structure factor S/ (q) = F©@F)(q,0)is
required as the initial condition. We prepare %) (g) from MD
simulations [31] in which the total number of particle is N =
10976. We calculate the partial radial distribution function
2“P)(r) in MD simulations, and then obtain S®#)(g) as the
Fourier transform of g@#)(r). Note that S@(q) is averaged
out at least 100 times. Since the simulation box is finite
(V173 =20.89044), S“P)(q) in the small wave number region
is not meaningful. Our data are extrapolated with the quadratic
function to approximate them. The convolution integral is
calculated using the algorithm proposed by Fuchs e al. [12].
The integral step of the wave number is Ag = 0.25/04a. Note
that Aq V'3 < 2. The upper limit of the integral is gmayx. To
carry out the double integral with regard to the wave number
correctly, we should set gmax as the direct correlation function
c2(q) = 0for g > Gmax- We set gmax = 60/0aa, which is large
enough to hold the above condition at each temperature. The
time step At doubles every 256 calculation steps, and the initial
time step is At = 1075,

In this paper the length is scaled by oaa, the temperature
by eaa/kp with the Boltzmann constant kg, the time by
Ty = oaav/m /48eaa, and the diffusion coefficient by dy =

O’AA«/SAA/I’”.

III. RESULT AND DISCUSSION

According to MFT, one can distinguish liquid, supercooled
liquid, and glass by using D%: Supercooled liquid is in the
range —2.6 > log,, D5 > —5.1and glassin —5.1 > log,, D%
[24,25]. Universality among different glass-forming systems
can be discussed by using MFT. We, however, apply MFT as a
unified viewpoint to compare MCT solutions with MD results
because of the overestimated temperature in MCT. Instead of
the long-time self-diffusion coefficient DE, we offer a reduced
long-time self-diffusion coefficient D" = Dk /T to scale
out the ballistic motion. The comparison at the same D" is
different from that at the same D§. Nevertheless, the difference
is quantitatively minor because states are categorized by
log,, D%, rather than D%. The reduced long-time self-diffusion
coefficient D" of particle A is shown in Fig. 1. Since particle
A is dominant in the Kob-Andersen model, we focus only
on the dynamics of particle A in what follows. Note that,
as T approaches the singular temperature Tycr ~ 0.922, D%
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FIG. 1. (Color online) The reduced long-time self-diffusion
coefficient D" = D%/ VT as a function of inverse temperature. The
blue square indicates the MCT solution of particle A and the black
circle the MD result of particle A. The broken lines represent
log,, D] = —1.55, log,, D} = —2.75, and log,, Dj = —4.40 from
top to bottom.

rapidly decreases and decays to zero. The value of Tyicr is
consistent with that reported by Nauroth ez al. [14,15].

We select three pairs of temperatures for MCT and MD
as shown in Fig. 1. The temperatures are (T in MCT, T in
MD) = (5.00, 1.67), (1.43, 0.625), and (1.00, 0.455). The
first state (log;, D] = —1.55) is a liquid, the second one
(log,y D5 = —2.75) a weak supercooled liquid, and the third
one (log;q D} = —4.40) a strong supercooled liquid. Figure 2
shows the comparison of M;(t) of particle A between MD
and MCT at the same D". This plot style emphasizes the
qualitative difference between MCT solutions and MD results
in the intermediate time regime. In Fig. 2, M,(¢) calculated
by the MCT overshoots the highest-temperature couples (D7).
On the other hand, MCT results do not approach MD results in
the lower temperature couples (D} and D3). These differences
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FIG. 2. (Color online) The mean-square displacement of particle
A as a function of T-compensated time for the three pairs of 7: (T in
MCT, T in MD) = (5.00, 1.67) at D7, (1.43, 0.625) at D, and (1.00,
0.455) at D5 (from left to right). The blue solid line represents the
MCT solution and the black broken one the MD result averaged over
15 results.
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indicate that, although T of MCT is larger than that of MD, the
mean-free path (~+/M, in the intermediate regime) calculated
by MCT is shorter than that by MD. In addition, a small
dent appears in the MCT solution, which is absent in the MD
results. The dent can intrinsically exist in the MCT equation
as explained next. In MCT, Méa)(t) satisfies

" ‘ . » 6k T
M >(z)+f dsK(t — )M (s) = TB 5)
0

where K(()“) () denotes the self-term of the approximative
memory function at ¢ — 0, represented as
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where F@P)(g.t) denotes the partial intermediate scattering
function and cg"’3 (q) = 8up — [S7'(¢)1®P). Ballistic motion
dominates in the short time regime, and hence we can
approximate the memory term to be constant:

K® = liII(l) K(()a)(t)
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Substituting the above expression for K(()“) (1), one can analyt-
ically express Mé“)(t) in the regime as

6k T
m;@ [1—cos (y K%)]. (8)
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Thus, it is expected that the small dent originates from this
oscillating term whose frequency is vk

The origin of the oscillation is not due to the MCT
approximations but due to the starting equation which is a
convolution-type generalized Langevin equation [32]. The
convolution-type equation seems to be compatibility with
systems that have a distinct time scale such as single-particle
Brownian motion (e.g., Ref. [33]). In contrast, it can be
stated that supercooled liquids or glasses do not have clearly
distinct time scale, but rather a scale-influenced (hierarchical)
structure [34,35]. Tokuyama has proposed the alternative
MCT [35]. The starting equation is the convolutionless-type
equation [36] that is compatibility with multiscaled systems
(e.g., Refs. [37-39]). The equation of motion in the alternative
MCT is described by

t
M) + / dsK ()M (1)
0

_ 6ksT [1 n / dssK(()“)(s):| —0. )
m 0

Note that the approximated memory term K(()a)(t) of the
alternative MCT is exactly the same as that of the conventional

MCT [34,35]. The formal solution under K(()"‘) (1) ~ Kgo‘)(>0)
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FIG. 3. (Color online) The self-intermediate-scattering function
of particle A as a function of T-compensated time for the three pairs
of T: (T in MCT, T in MD) = (5.00, 1.67) at D7, (1.43, 0.625) at
Dj, and (1.00, 0.455) at D% (from left to right). The blue solid line
represents the MCT solution and the black broken one the MD result
averaged over 15 results.

is obtained as

. t K(a) . v
Méa)(f) = / ds (1 + é s2> oKW@ =sh2. (10)
0

It is clear that Mé“)(t) > 0 for ¢ > s > 0. Therefore, Mé“)(t)
is monotonic and has no oscillation in the alternative MCT. It
actually does not show a dent in numerical calculations [40].
Our results imply that the starting equation should be selected
carefully in response to the dynamics.

Figure 3 shows the comparison of Fy(q,t) of particle A
between MD and MCT at the same D". Note that we employ
g = 7.250544~" corresponding to the first peak of S(g). As
expressed in Eq. (3), the higher terms of g cannot be neglected
in goaa > 1. Thus, the long-time behavior of MCT deviates
from that of MD even at the same D”. On the other hand, in the
intermediate time scale, the dynamics is qualitatively different
between MCT and MD, as well as M,(¢).

IV. SUMMARY

We have numerically solved the equations of MCT for
Kob-Andersen binary mixtures to study the tagged-particle
dynamics. We have proposed a method of comparison: The
comparison between MCT and MD has been done from a
unified point of view by using the reduced long-time self-
diffusion coefficient D". The qualitative comparison at the
same reduced long-time self-diffusion coefficient has shown
that the tagged-particle dynamics calculated from the MCT
equations deviates from that obtained by the MD simulations
in the intermediate time regime. There exists an oscillation
in MCT solutions. We have briefly mentioned an alternative
starting equation. The alternative MCT is constructed by
the same framework as the conventional MCT; however, the
starting equations differ from each other. We have shown that
the alternative MCT can avoid oscillation in the intermediate
time scale. It implies that the origin of the oscillation is due to
the starting equation, namely, the convolution-type generalized

022501-3



BRIEF REPORTS

Langevin equation. The numerical analysis of the alternative
MCT will be discussed elsewhere.
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