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Active Brownian motion in threshold distribution of a Coulomb blockade model
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Randomly distributed offset charges affect the nonlinear current-voltage property via the fluctuation of the
threshold voltage above which the current flows in an array of a Coulomb blockade (CB). We analytically derive
the distribution of the threshold voltage for a model of one-dimensional locally coupled CB arrays and propose
a general relationship between conductance and distribution. In addition, we show that the distribution for a long
array is equivalent to the distribution of the number of upward steps for aligned objects of different heights. The
distribution satisfies a novel Fokker-Planck equation corresponding to active Brownian motion. The feature of
the distribution is clarified by comparing it with the Wigner and Ornstein-Uhlenbeck processes. It is not restricted
to the CB model but is instructive in statistical physics generally.
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I. INTRODUCTION

Nonlinear phenomena and threshold behaviors are observed
in many disordered systems [1]. One such example is a
Coulomb blockade (CB) [2], observed at low bias voltage
of an electronic device having a low-capacitance tunnel
junction. Specifically, tunneling of an electron is prevented
by the presence of other electrons due to the electron-electron
interaction. Thus, no current flows below a threshold voltage
Vth of the CB. Above Vth, nonlinear current-voltage (I -V )
behavior appears. Studies have explicitly considered types
of disorder and clarified that disorder affects the nonlinear
transport [3–7]. Middleton and Wingreen (MW) considered the
charge disorder that originates from impurities of a substrate
[3]. The threshold voltage is sensitive to this charge disorder.
The distribution of Vth has never been derived, although MW
have discussed the mean value and variance [3,6].

In this paper, we focus on the threshold distribution (TD) as
it leads to understanding the nonlinearity in I -V response; we
show that the conductance is represented by the cumulative
distribution of Vth. We find an analytic expression for the
TD for a one-dimensional (1D) locally coupled CB array.
In addition, we reveal that the TD in the long-array limit
is equivalent to the distribution for the number of upward
steps for aligned objects of different heights. The distribution
satisfies a novel Fokker-Planck equation corresponding to
active Brownian motion [8], i.e., overdamped motion of a
Brownian particle in a harmonic potential that spreads with
time. This characteristic of the distribution is quite instructive
in the field of statistical physics.

II. MODEL

We employ the model proposed by MW [3], in which there
are N aligned Coulomb islands, constituting the minimum
units of charge storage (Fig. 1). We consider that the gate
capacitance Cg is much greater than the island-island and
island-electrode capacitances C. In general, interactions such
as electron-electron and spin-coupling play an important role
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in evolving the nonlinear I -V behavior [5,9]. However, such
interactions are not dominant if C/Cg � 1, corresponding
to the so-called locally coupled CB. Compared with several
theoretical approaches such as the density-functional theory
[9,10] and the random matrix theory [11], the model we
employ is classical and the simplest demonstrating CB. Many
experimental features though can be explained by this model
[4,12–15], and theoretical work is still continuing even now
[6,7,16]. More significantly, some results obtained in this paper
are not solely restricted to this model.

The voltages of the negative and gate electrodes are set to
zero, and the bias voltage is thus equivalent to the voltage
�+ of the positive electrode. Let Qi denote the charge of
the ith island; i ∈ {1, . . . ,N}. The charge is represented as
Qi = nee + qi , where ne denotes an integer, e the elementary
charge, and qi the offset charge arising from an impurity.
The offset charges are given by uniform random numbers
in [−e/2,e/2] and remain constant over time. The offset
charges just indicate the nonintegral part of each charge;
i.e., the uniform distribution for qi is equivalent to arbitrary
distributions of offset charges.

The total energy E of the system is written as [17]

E = 1

2

∑
i,j

QiM
−1
ij Qj + C�+

∑
i,j

QiM
−1
ij + Q+�+, (1)

where Q+ denotes the charge of the positive electrode. Mij

denotes the capacitance matrix; for 1D simple arrays, Mij =
Cg + 2C for i = j , Mij = −C for |i − j | = 1, and Mij = 0
otherwise. The system evolves such that E decreases by the
sequential tunneling of an electron. To take the most probable
path of evolution, and we virtually transfer an electron to
another island and calculate the energy change �Ei ′→j ′ for
all possible tunneling paths, where {i ′,j ′} ∈ {1, . . . ,N, + ,−}.
In simulations (e.g., [3,7,16]), each tunneling time, which
is proportional to the change in energy for T = 0 [18], is
calculated. The path of the shortest tunneling time is thus
employed for actual electron transfer. In the rest of the paper,
we work in dimensionless units, whereby the charge is scaled
by e, the voltage by e/Cg, and the energy by e2/Cg.
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FIG. 1. A configuration of a 1D array with N = 8 (upper) and
a distribution of the offset charge qi (bottom). In the upper figure, a
circle represents a Coulomb island and the connecting line a tunneling
junction with capacitance C. The array is sandwiched between
positive (+) and negative (−) electrodes. Each island connects to
a gate electrode, omitted in the figure, with capacitance Cg. In the
bottom figure, an arrow indicates an upward step, which means
ql < ql+1 (l ∈ {1, . . . ,N − 1}). In this distribution, there are three
upward steps and four offset charges less than q1.

III. Vth AS A FUNCTION OF q1

As a simple example, let us consider an array with N = 2
and describe Vth as a function of offset charges. There are six
possible paths; however, it is sufficient to consider �E1→+,
�E2→1, and �E−→2 for �+ > 0. Note that the paths in the
reverse direction should be considered when �+ < 0. In the
limit C/Cg → 0,

�E1→+ < 0 ⇔ �+ > Q1 + 1/2, (2a)

�E2→1 < 0 ⇔ Q1 − Q2 > 1, (2b)

�E−→2 < 0 ⇔ Q2 > 1/2. (2c)

If all energy changes are greater than zero, no electrons get
transferred; i.e., blockading occurs. Equation (2b) suggests
that it is effective to separately consider charge-offset con-
ditions q1 > q2 (no upward steps) and q1 < q2 (an upward
step). As �+ increases quasistatically, under the former
condition, Eq. (2a) is satisfied above �+ = q1 + 1/2, and
an electron then is transferred from island 1 to the positive
electrode. Thus, Eq. (2b) and subsequently Eq. (2c) are
satisfied. Afterward, Eq. (2a) is again satisfied. This cycle
consequently gets repeated; i.e., the current flows between
the positive and negative electrodes in a steady state above
�+ > Vth = q1 + 1/2. In contrast, in the latter case, even if
Eq. (2a) is satisfied and an electron moves from island 1 to the

positive electrode, �E2→1 remains greater than zero because
q1 < q2. For �E1→+ and �E2→1 to be less than zero, �+ has
to be increased to q1 + 3/2, and a steady-state current then
flows; i.e., the voltage threshold is Vth = q1 + 3/2. The above
argument holds, without loss of generality, to arbitrary N ; i.e.,

Vth(q1,n) = q1 + n − 1/2 (−1/2 � q1 � 1/2) (3a)

⇔ q1(Vth,n) = Vth − n + 1/2 (n − 1 � Vth � n), (3b)

where n − 1 indicates the number of upward steps; n =
1, . . . ,N . The threshold depends only on q1 and n; i.e., the
magnitudes of the offset charges between neighboring islands
are renormalized to n.

IV. THRESHOLD DISTRIBUTION

Equation (3a) suggests that the charge-offset analysis based
on q1 is appropriate. In addition, Eq. (3b) suggests that the
region 0 � Vth � N should be divided into N equally spaced
segments. Thus, the nth segmented TD for the N -island array
is expressed as

P
(n)
N (Vth) =

N−1∑
k=0

UN (n|k)�N (k) (n − 1 � Vth � n), (4)

where UN (n|k) denotes the conditional probability that there
are n − 1 upward steps if there are k offset charges less than
qh′ . Note that UN (n|k) does not depend on Vth. Here, since q1

is the basis for analyzing the offset charges, we should select
h′ = 1. �N (k) denotes the probability that there are k offset
charges less than q1, and it is expressed as

�N (k) =
(

N − 1
k

)
pk

L pN−1−k
G , (5)

where pG and pL are the probabilities of qh > q1 and qh < q1,
respectively, and h ∈ {2, . . . ,N}. Note that pG = 1/2 − q1 and
pL = 1/2 + q1.

One can obtain U2(1|0) = U2(2|1) = 0 and U2(1|1) =
U2(2|0) = 1, and then P

(1)
2 (Vth) = Vth, P

(2)
2 (Vth) = 2 − Vth.

Using the same procedure, we obtain the entire TD PN (Vth) for
arbitrary N as the joining of the segmented TDs P

(n)
N (Vth) [19].

As shown in Fig. 2, simulation results are correctly described

1.0

0.5

0.0

2 
(

th
 )

210

= 2
1.0

0.5

0.0

3 
(

th
 )

3210

= 3
1.0

0.5

0.0

4 
(

th
 )

43210

= 4

1.0

0.5

0.0

5 
(

th
 )

543210
th

= 5

10
-5
 

10
-3
 

5 
(

th
 )

1.00.50.0
th

FIG. 2. (Color online) Plot of TDs for N = 2,3,4, and 5 (from right to left). A open circle represents a simulation result and a solid line the
segmented TD P

(n)
N (Vth) obtained analytically, where P

(n)
N (Vth) with even n is colored blue (light gray). The specific equations of P

(n)
N (Vth) for

N = 3,4, and 5 are given in the supplement [19]. The inset is a close-up (semilog plot) of the first segment for N = 5. The simulation used
106 different initial distributions of the offset charges.
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without fitting parameters. It is clear that, for arbitrary N , each
segmented TD is represented as an (N − 1)-degree polynomial
of Vth because of the term pL

kpG
N−1−k . For small N (in

particular, N = 2 in Fig. 2), the distributions have strange
shapes, which might be a consequence of model-dependent
behavior. In more realistic cases, other physical effects such
as electrode shape should be taken into account.

V. DISTRIBUTION OF UPWARD STEPS

The conditional probability UN (n|k) determines the TD
for arbitrary N . However, in practice, it is difficult to obtain
UN (n|k) for large N . To investigate the TD for large N , we fo-
cus on the intersections of the segmented TDs. In particular, we
focus on the right edge Vth = n of each segment, in which q1 is
the largest in the offset charges; namely, pL = 1. Equation (4)
thus reduces to

P
(n)
N (Vth) = UN (n|N − 1) =: Y (n,N ) (at Vth = n). (6)

Therefore, our problem results in obtaining Y (n,N ) that
indicates the probability in the case of n − 1 upward steps for
N − 1 aligned objects (i.e., q2, . . . ,qN ) of different heights.
Since none of the specific features of the model are used, the
discussion in the rest of this section is not limited to the CB
but has applicability to statistical physics generally.

We consider the probability that the number of upward steps
for N + 1 different heights is the same as that for N different
heights. According to Fig. 3, the probability is expressed by
〈k + 1〉/N , where the brackets 〈·〉 indicate the average for

D
(n)
N−1(k) := UN−1(n|k)

/ N−2∑
k=0

UN−1(n|k). (7)

D
(n)
N−1(k) denotes the probability that there are k offset charges

less than qh′ if there are n − 1 upward steps in N − 1 offset
charges, where the basis for analyzing offset charges is qN , i.e.,
h′ = N . Although a mathematical proof has yet to be given,
the probability 〈k + 1〉/N is expected to be n/N [20]. This
expectation is understandable qualitatively as follows. If there
are already many upward steps (i.e., large n), then qN tends
to be greater than other offset charges (q2, . . . ,qN−1). Thus,
the probability tends to increase with increasing n. With this
expectation, the recurrence formula for Y (n,N ) is obtained as

Y (n,N + 1) = n

N
Y (n,N ) + N − (n − 1)

N
Y (n − 1,N ). (8)

FIG. 3. An example of the distribution, where there are five
upward steps (n = 6) and five offset charges less than qN (k = 5).
The arrows at right indicate the possible location of qN+1. There are
N arrows in total, with k + 1 arrows belonging to (A). If an arrow is
chosen from (A), no increase in upward steps occurs.

This probability distribution is identified as that of the
following urn process. An urn contains n white balls and N − n

black ones. One draws a ball from the urn, and then returns
the ball. At the same time, one adds α balls of the same color
and β balls of the opposite color. In the case (α,β) = (0,1),
the probability distribution drawing a white ball is represented
by Y (n,N ). Note that the cases α > 0 and β = 0 are the Pólya
urn process [21].

For later discussion, we introduce both a fictive field x =
n − N/2 and time t = N . Note that x and t do not indicate
electron motions, but are just changes in variables [22]. By
defining Z(x,t) := Y (x + N/2,N ), Eq. (8) reduces to

Z(x,t + 1) =
(

1

2
+ x+

t

)
Z (x+,t) +

(
1

2
− x−

t

)
Z (x−,t) ,

(9)

where x± = x ± 1/2. In the continuous limit, a partial differ-
ential equation is obtained:

∂Z(x,t)

∂t
= ∂

∂x

[
x

t
Z(x,t)

]
+ D

∂2Z(x,t)

∂x2
, (10)

for which D = 1/8 describes the locally coupled CB. The
first term of the right-hand side depends explicitly on time, so
that the equation is classified as related to a time-dependent
Ornstein-Uhlenbeck (OU) process [23]. The differential equa-
tion is equivalent to the Fokker-Planck equation corresponding
to active Brownian motion [8], i.e., overdamped motion of a
Brownian particle in a harmonic potential φ(X,t) = X2/2t ,
represented as

dX

dt
= − ∂

∂X
φ(X,t) +

√
2Dξ (t), (11)

where X = X(t) denotes the position of the Brownian particle,
and ξ (t) denotes a fluctuating term that satisfies 〈ξ (t)ξ (t ′)〉 =
δ(t − t ′) with delta function δ(·). This novel relationship
between the distribution of the upward steps and the active
Brownian motion is analogous to that between the binomial
coefficient and Brownian motion.

It can be shown that the distribution Z(x,t) is Gaussian
with variance 3Dt/2 under the limit t → ∞ [24]. In that limit,
although the variance of the OU process [i.e., φ(X,t) = X2/2
in Eq. (11)] is a constant D, that of the above time-dependent
OU process is proportional to t (Table I). This is qualitatively
the same as the Wiener process [i.e., φ(X,t) = 0 in Eq. (11)];
however, the variance of Z(x,t) is smaller than that of the
Wiener process of 2Dt . The presence of the potential is
included in consideration of the variance.

VI. A PERSPECTIVE ON NONLINEAR I-V PROPERTY

Let us leave Z(x,t) with the fictive field x and time t ,
and return to Y (n,N ) with n intersections of neighboring

TABLE I. Comparison of the variance corresponding to Eq. (11).

Potential φ(X,t) Variance (t → ∞)

Wiener 0 2Dt

Ornstein–Uhlenbeck X2/2 D

Obtained in this paper X2/2t 2Dt/3
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segmented TDs and array length N . In the long-array limit,
the distribution converges to a Gaussian with variance N/12.

Finally, we note the connection of TD to the nonlinearity in
the I -V behavior. One can describe the average I -V property
I (V ) := I (V, {q}), where the overline indicates the average
for all sets {q}. In general, the offset charge distribution affects
not only the value of the threshold but also the trajectory of
the electron between positive and negative electrodes. Each
I (V, {qi}) is linear just above its threshold [6] as

I (V,{q}) = G({q})[V − Vth({q})]H[V − Vth({q})], (12)

where H[·] denotes the Heaviside step function. The co-
efficient G depends on the trajectory of an electron and
consequently on {q}. Here, let us consider 1D arrays, where
G is regarded as a constant for all offset charge distributions;
i.e., the offset charge distribution influences only the value
of the threshold. The average I -V property of 1D arrays
thus reduces to I1D(V ) = ∫ ∞

0 I (V,Vth)PN (Vth)dVth. Further,
the conductance reduces to

dI1D

dV
= G

∫ V

0
PN (Vth)dVth, (13)

that is, the conductance is represented by the cumulative
distribution of Vth. In the model we employ, the conductance
for long arrays is represented by the error function. Since it is
not unusual that the TD is Gaussian, a conductance represented
by the error function might be universal.

VII. SUMMARY

We have obtained analytically the TD for a locally
coupled 1D CB array containing N Coulomb islands. We
first found an expression between Vth and q1. Second, we

introduced the segmented TD as a sum of products of the
probability �N (k) and the conditional probability UN (n|k).
Determining UN (n|k) leads to specific equations for the entire
TD that perfectly describe our simulation results. In the
long-array limit, the distribution converges to Gaussian form
with variance N/12. In addition, we discussed a general
characteristic of the nonlinear I -V behavior, where the cumu-
lative distribution of the threshold voltage corresponds to the
conductance.

We also revealed that the distribution of the intersection
is equivalent to the distribution Y (n,N ), which indicates the
probability for n − 1 upward steps for N − 1 aligned objects of
different heights. Moreover, the distribution Z(x,t), which is
equivalent to Y (n,N ), satisfies a novel Fokker-Planck equation
corresponding to active Brownian motion, i.e., overdamped
motion of a Brownian particle in a harmonic potential that
spreads with time. This relationship is analogous to Brownian
motion and the binomial coefficients (i.e., the Pascal triangle).
Further, the concept underlying the distribution of upward
steps will be applicable to other nonequilibrium and/or
disordered systems. We focused on the derivation of the
recurrence formula and the continuous limit in this paper. It
will be interesting to investigate characteristics of the novel
Fokker-Planck equation.
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