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Modal relaxation dynamics has been observed experimentally to clarify statistical-physical properties of
soft-mode turbulence, the spatiotemporal chaos observed in homeotropically aligned nematic liquid crystals.
We found a dual structure, dynamical crossover associated with violation of time-reversal invariance, the
corresponding time scales satisfying a dynamical scaling law. To specify the origin of the dual structure,
the memory function due to nonthermal fluctuations has been defined by a projection-operator method
and obtained numerically using experimental results. The results of the memory function suggest that the
nonthermal fluctuations can be divided into Markov and non-Markov contributions; the latter is called the
turbulent fluctuation (TF). Consequently, the relaxation dynamics is separated into three characteristic stages:
bare-friction, early, and late stages. If the dissipation due to TFs dominates over that of the Markov contribution,
the bare-friction stage contracts; the early and late stages then configure the dual structure. The memory effect
due to TFs results in a time-reversible relaxation at the early stage, and the disappearance of the memory by
turbulent mixing leads to a simple exponential relaxation at the late stage. Furthermore, the memory effect due
to TFs is shown to originate from characteristic spatial coherency called the patch structure.
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I. INTRODUCTION

Weak nonlinearity can generate spatial and temporal dis-
orders in systems where the number of effective degrees of
freedom increases with increasing system size. A phenomenon
triggered by weak nonlinearity in such high-dimensional
systems is called spatiotemporal chaos, in contrast with chaos
where unpredictable behavior emerges from a few degrees
of freedom in a deterministic way. Theoretical work on the
spatiotemporal chaos (Refs. [1,2], and references therein)
has covered topics such as the complex Ginzburg-Landau
equation, the Kuramoto-Sivashinsky turbulence (KST), the
Nikolaevskii turbulence, and coupled map lattices. An out-
standing feature of chaos and turbulence is its dual structure,
where the dynamics is separated into an initial regime
corresponding to deterministic short orbits and a final regime
corresponding to stochastic long orbits. Mori and Okamura,
for example, have theoretically studied one-dimensional (1D)
KST and revealed the dual structure in turbulent mixing by
numerical analysis [3].

Convection systems have been experimentally investigated
to study nonlinearity. An example is electrohydrodynamic
convection observed in the nematic liquid crystal and con-
trolled by an ac voltage applied to the system. One can easily
achieve accessible characteristic length and time scales in
experiments of electroconvection compared with the Rayleigh-
Bénard convection. Another advantage of investigating ne-
matics is the ease in controlling the anisotropy to study
symmetry properties. There are two types of layer alignment in
nematic liquid crystals; one is planar alignment in which the
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director aligns parallel to substrates (x direction), and the
other is homeotropic alignment in which the director aligns
perpendicular to substrates (z direction). Rubbing along the x

direction of a substrate’s surface (x-y plane) produces planar
systems and intrinsically breaks the rotational symmetry. In
homeotropic systems, by contrast, the rotational symmetry in
the x-y plane remains. With a sufficiently strong applied ac
voltage, magnitude V , and fixed frequency f , the Fréedericksz
transition, occurring at a certain threshold voltage VF, spon-
taneously breaks the rotational symmetry [4]; the transition
is accompanied by the excitation of the Nambu-Goldstone
modes [5–7]. By further increasing V , electrohydrodynamic
convection occurs at Vc. The nonlinear coupling between the
convective and Nambu-Goldstone modes generates a pattern
that is both spatially and temporally disordered. The experi-
mentally observed phenomenon, called soft-mode turbulence
(SMT), is an example of spatiotemporal chaos [8–10].

In our preceding study, we observed SMT relaxation by
measuring a temporal autocorrelation function and reported
that the relaxation is well fitted by a compressed expo-
nential function [11]. Because the compressed exponential
is employed to describe the dynamics of jammed systems
[12], we remarked on the similarity between SMT and glass
forming liquids. The nonlinearity in the dynamics of the
latter originates from dynamic coherency in some regions.
In fact, spatiotemporal fluctuating cooperative regions have
been observed as dynamical heterogeneities near the glass
transition point [13–16]. A characteristic length for these
cooperative regions increases as the glass transition point
is approached. In SMT, on the other hand, patch domains
exist in which convective rolls align in a unique orientation
[17–19]. The characteristic size ξ of a patch domain is several
times longer than the typical size of convective rolls and
decreases with the distance from SMT onset; ξ ∼ ε−1/2 with
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control parameter ε. We have therefore concluded that the
SMT patch domains behave like the cooperative regions in
glass forming liquids and the coherent motion in the domains
generates nonexponential relaxation. To study SMT dynamics
in detail, the temporal correlations of each wave number,
modal autocorrelation functions, are suitable. Our previous
study focused on the net autocorrelation function consisting of
the entire wave-number information. Here, we investigate the
modal relaxation dynamics to specify the statistical physics of
SMT.

II. EXPERIMENT

We study the two-dimensional pattern dynamics of SMT
observed in a homeotropic alignment of nematic liquid
crystals. This study follows a standard setup [8,20,21]. The
space between two parallel glass plates, spaced 27 μm
apart, was filled with a nematic liquid crystal, N -(4-
methoxybenzilidene)-4-buthylaniline. The plate surfaces were
coated with transparent electrodes, made of indium tin
oxide with a circular cross section of radius 13 mm. To
obtain homeotropic alignment, the surfaces were covered
by a surfactant, N,N -dimethyl-N -octadecyl-3-aminopropyl-
trimethoxysilyl chloride 50%. The values of the dielectric con-
stant and electric conductivity parallel to the director were ε‖ =
6.25 and σ‖ = 1.17 × 10−7 �−1 m−1, respectively. Denoting
the dielectric constant perpendicular to the director by ε⊥,
the dielectric constant anisotropy εa = ε‖ − ε⊥ is found to be
negative. An ac voltage, V (t) = √

2V cos(2πf t), was applied
to the sample. For a control parameter, we employed a normal-
ized voltage, ε = (V/Vc)2 − 1, where Vc denotes the threshold
voltage for electroconvection having a value of 7.78 ± 0.05 V.
We show results for ε = 0.025,0.050,0.075,0.10,0.20,0.30,

and 0.40, where ε has a margin of error of ±0.013. Another
control parameter was the frequency f of the ac voltage. Two
patterns of SMT arise: oblique roll in f < fL and normal roll in
f > fL, where fL denotes the Lifshitz frequency [8,9]. We set
the frequency f = 100 Hz well below fL. The temperature was
regulated to 30.00 ± 0.05 ◦C. Before each sampling, we waited
for 10 min at the fixed voltage Vw and then a further 10 min
at the set V to get a desired ε value, where VF < Vw < Vc.
The waiting time was sufficiently long for systems to achieve
steady state.

The electroconvection pattern was observed by a micro-
scope (ECLIPSE E600POL, Nikon Corporation, Tokyo) and
was captured by a high-speed camera (HAS220, DITECT
Co., Ltd., Tokyo) that can successively take 4200 frames.
The numbers of frames per second were 5 for ε < 0.1 and
10 otherwise. A typical two-dimensional image is shown
in Fig. 1(a). The measurement area was 830 × 830 μm2

(450 × 450 pixels). The transmitted light intensity I (x,t) at
each pixel was digitized into 8-bit (i.e., 256-level) information,
where a series of pattern analyzing was processed according
to Ref. [22].

With angle brackets signifying the long-time average in
the steady state, the temporal correlation of two functions is
defined as

〈f (t + τ )g(t)〉 = lim
T →∞

1

2T

∫ T

−T

dtf (t + τ )g(t). (1)
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FIG. 1. Static information of our experiment at ε = 0.10. (a) A
typical snapshot of SMT with the white scale bar indicating 100 μm.
Each bright line indicates upward flow. (b) Magnitude tints of the
spatial power spectrum Pk in the Fourier space, where shading
corresponds to the Pk value. (c) Plot of the power spectrum Pk as
a function of the radial wave number k = |k|. The peak, marked
by an arrow, corresponds to the fundamental period in a convective
rolling.

We employ the Fourier transform of the fluctuation 	I (x,t) =
I (x,t) − 〈I (x,t)〉 as the gross variable uk(t):

uk(t) :=
∫

dx	I (x,t)eik·x, (2)

where i = √−1 and the integral range is over the entire
system domain. In isotropic systems, it is sufficient to study
uk(t) [23], where k denotes the radial wave number, k = |k|.
We focus on the normalized modal time-correlation function
of k:

Ûk(τ ) := 〈uk(t + τ )u∗
k(t)〉P −1

k , (3)

where the asterisk denotes the complex conjugate operation
and Pk = 〈|uk(t)|2〉 denotes the spatial power spectrum. Note
that Ûk(τ ) is a real number due to translational symmetry
and isotropy. The spatial power spectra as functions of the
wave number k and k = |k| are illustrated in Fig. 1(b)
and 1(c), respectively. SMT isotropy is clearly reflected in
Fig. 1(b). Although the experimental parameters in Ref. [23]
are slightly different from ours, the Pk profiles agree. A
clear peak exists at kpeak � 0.321 μm−1 for ε = 0.10 and its
corresponding length λpeak = 2π/kpeak is 19.6 μm, which is
a half of λ0, where λ0 = λ0(ε) denotes the length of a pair of
electroconvections. The peak wave numbers kpeak for other ε

values are similar. The wave number k is normalized by λ0 as
k̂ = kλ0/2π .
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FIG. 2. (Color online) Plot of the modal correlation functions
at ε = 0.050 (top), 0.10 (middle), and 0.40 (bottom). The wave
numbers, k̂, are 0.76 (red square), 1.0 (brown inverted triangle), 2.0
(black circle), 3.0 (green triangle), and 4.0 (blue diamond).

III. RESULTS AND DISCUSSION

A. Dual relaxation

The modal autocorrelation function Ûk(t) obtained exper-
imentally is shown in Fig. 2. In the short-time regime, the
relaxation is not described by a simple exponential function.
Instead, we found dual relaxation as evident in Fig. 3. In the
early stage [24], the correlation function follows an algebraic
decay form:

Ûk(τ ) ∝ 1 − (
τ
/
τ

(a)
k

)2
. (4)

In contrast, the relaxation in the late stage is well described by
exponential decay:

Ûk(τ ) ∝ exp
[−τ/τ

(e)
k

]
. (5)

Figure 4 presents the characteristic time scales at each stage
for the dual structure. The time scales are almost constant at
small wave numbers. Note that the results at small k̂ may
be affected by limitations in sample averaging. At large wave
numbers, the time scales of the dual relaxation satisfy dynamic
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FIG. 3. (Color online) The normalized modal autocorrelation
function of ε = 0.10 and k̂ = 2.0, which is the same as shown in
Fig. 2. The algebraic decay (4) (brown solid line) well describes
the dynamics in the early stage, but a simple exponential (5) (green
dashed line) is better at the late stage.

scaling laws:

τ
(a)
k ∝ k̂−za , τ

(e)
k ∝ k̂−ze , (6)

with dynamical exponents za � 1.0 and ze � 1.5 regardless of
ε. Although Mori and Okamura have reported that the dynam-
ical scaling exponents obtained theoretically in 1D KST are
za = 1 and ze = 2 [3], we cannot directly compare our results
with their theoretical work because the dynamical exponent
depends on spatial dimensionality. Indeed, dynamic scaling
for several turbulence models depends on the dimensionality
[25–27].

To elucidate the dual structure of SMT theoretically,
we have taken into account the experimental fact that the
spatiotemporal disorder accompanied by the patch struc-
ture can be represented as nonthermal fluctuations [17,28].
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FIG. 4. (Color online) Log-log plots of time scales τ
(a)
k (top) and

τ
(e)
k (bottom) for several control parameters: ε = 0.025 (pink), 0.10

(blue), 0.20 (green), 0.30 (brown), and 0.40 (red). The dashed lines
plot the power law with exponents za = 1.0 (top panel) and ze = 1.5
(bottom panel).
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FIG. 5. The memory function �′
k(τ ) characterized by Eq. (7). This

is the result of ε = 0.10 and k̂ = 2.0 as an example.

The projection-operator method for turbulence [29] is one
of the most suitable methods to manage such nonthermal
fluctuations; its mathematical procedure derives an evolution
equation containing the memory effect that is equivalent to
the autocorrelation of fluctuations (see Appendix). Thus, in
the rest of the paper, analysis for the memory functions plays
a central role in studying the relationship between the dual
structure and the nonthermal fluctuations.

B. Memory effect due to nonthermal fluctuations

We assume the modal elements {uk} form a complete
set of macroscopic variables in SMT [30]. According to the
projection-operator formalism, the evolution equation in SMT
is represented as

∂Ûk(τ )

∂τ
= −

∫ τ

0
dτ ′�′

k(τ − τ ′)Ûk(τ ′), (7)

where �′
k(τ ) denotes the memory function that results from the

nonthermal fluctuations. Here, translational symmetry reduces
the temporal correlation of the modal elements to

〈uk(t + τ )u∗
k′(t)〉 = δk,k′ 〈uk(t + τ )u∗

k(t)〉, (8)

and the mechanical coefficients ωkk are zero by definition.
Using experimental results for the modal correlation func-

tion, one can numerically solve Eq. (7) to obtain the memory
function. The memory function �′

k(τ ) has a sharp peak at
τ = 0, as evident in Fig. 5, implying that the nonthermal
fluctuations can be separated into Markov and non-Markov
contributions. Therefore, with

�′
k(τ ) = 2γ

(0)
k δ(τ ) + �k(τ ), (9)

where γ
(0)
k denotes the bare friction due to the Markov

contribution of the nonthermal fluctuations and �k(τ ) the
memory function due to the non-Markov contribution, the
evolution equation (7) reduces to

∂Ûk(τ )

∂τ
= −γ

(0)
k Ûk(τ ) −

∫ τ

0
dτ ′�k(τ − τ ′)Ûk(τ ′). (10)

To emphasize the transport due to the turbulentlike dynamics,
the non-Markov contribution to the nonthermal fluctuations is
here called the turbulent fluctuations (TFs) in SMT. One can
define a characteristic time scale for the memory function due
to TFs as

τ
(�)
k := 1

�k(0)

∫ ∞

0
dτ�k(τ ), (11)

within which the memory effects due to TFs are alive.
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FIG. 6. (Color online) Time dependence of the memory function
for ε = 0.10 at several fixed wave numbers: k̂ = 0.76 (red square),
1.0 (brown inverted triangle), 2.0 (black circle), 3.0 (green triangle),
and 4.0 (blue diamond).

As seen in Fig. 6, the memory function �k(t) caused by
TFs has non-negligible magnitudes and time scales over a
range of wave numbers in the early stage; therefore, SMT
dynamics is regarded as being non-Markovian due to TFs.
The memory has a small peak around τ � 2 s. We believe that
this is due to a residual of the mechanical coefficient appearing
in the projection-operator method, despite the coefficient being
theoretically zero.

Each equation of the dual relaxation is elucidated by the
evolution equation (10). First, let us consider the dynamics at
the late stage, τ (�)

k � τ . The frequency-dependent friction �k,ω

caused by TFs is defined as the Fourier-Laplace transformation
of the memory function:

�k,ω :=
∫ ∞

0
dτ�k(τ )eiωτ . (12)

At the late stage, friction can be regarded as static,

γ
(�)
k := �k,ω=0; (13)

hence, the memory effect is approximated by a δ function,

�k(τ ) � 2γ
(�)
k δ(τ ). (14)

The modal relaxation dynamics is thus obtained as a simple
exponential function (5) with the characteristic time:

τ
(e)
k = (

γ
(0)
k + γ

(�)
k

)−1
. (15)

Next, at τ � τ
(�)
k , an approximate solution of Eq. (10) is

Ûk(τ ) = 1 − γ
(�)
k

τ
(�)
k

∫ τ

0
dτ ′(γ̃kτ

(�)
k + τ ′) + O(τ 3), (16)

with γ̃k = γ
(0)
k /γ

(�)
k . Thus, if γ̃k � 1, the time range can

be separated into τ � γ̃kτ
(�)
k and γ̃kτ

(�)
k � τ � τ

(�)
k . In the

shorter time regime τ � γ̃kτ
(�)
k , called the bare-friction stage,

modal relaxation decays linearly with slope γ
(0)
k . In contrast,

it reduces to time-reversible algebraic decay in the longer time
regime γ̃kτ

(�)
k � τ � τ

(�)
k , i.e., the early stage of the dual

structure with characteristic time,

τ
(a)
k =

√
2τ

(�)
k

/
γ

(�)
k . (17)
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TABLE I. Characteristic stages of modal relaxation dynamics in soft-mode turbulence.

Stage Time range Decay form

Bare-friction stage τ � γ̃kτ
(�)
k Linear decay caused by the Markov fluctuations.

Early stage γ̃kτ
(�)
k � τ � τ

(�)
k Time-reversible decay that originates from memory due to TFs [Eq. (4)].

Late stage τ
(�)
k � τ Simple exponential decay after turbulent mixing [Eq. (5)].

Therefore, a small ratio γ̃k of the friction coefficients is a
necessary requirement for the appearance of dual relaxation in
SMT. The characteristic stages are summarized in Table I.

C. Characteristic time scales

A characteristic time scale for the modal autocorrelation
function can be defined by

τ
(U)
k :=

∫ ∞

0
dτÛk(τ ). (18)

This is the relaxation time due to nonthermal fluctuations. In
contrast, the time scale 1/γ

(0)
k denotes the relaxation time due

to Markov fluctuations only. From the evolution equation (10),
τ

(U)
k is exactly represented by the friction coefficients,

τ
(U)
k = (

γ
(0)
k + γ

(�)
k

)−1
. (19)

Therefore, τ (U)
k is nearly equal to τ

(e)
k according to Eq. (15); its

accuracy has been confirmed within the margins of numerical
error, indicating that the approximation (14) is reasonable.

The characteristic time scale τ
(�)
k , plotted as a function of

normalized wave number in Fig. 7, has a weak peak in k̂ < 2
for each ε. Let k� denote the wave number at which τ

(�)
k has

a peak, where k� is determined by a method for multipeak
fitting so that roughness of curves is smoothed. In expectation
that the coherency in patch domains leads to the non-Markov
memory effect, the time scale τ

(�)
k should include features

relating to the patch domains. The length scale λ� = 2π/k� is
several times larger than the diameter of an electroconvective
roll. In addition, the power law λ� ∝ ε−1/2 is quantitatively
reasonable as indicated in Fig. 8. Therefore, it follows that
the dual relaxation caused by TFs originates from the patch
structure. The time scale rapidly decreases at larger length
scales, k < k� , indicating that interpatch dynamics does not
affect the memory effect due to TFs. Some work does support

1.5

1.0

0.5

τ(Γ
) 
(s

)

543210 ^

 ε = 0.40
 ε = 0.20

 ε = 0.050

FIG. 7. (Color online) Wave-number dependencies of the time
scale τ

(�)
k for several values of : ε = 0.050 (purple), 0.20 (green), and

0.40 (red). Each dotted curve is obtained by a peak-fitting method
and the vertical arrow points to where k� is.

the relationship between the patch structure and the dual
structure [17,28,31], where the dynamics of a tagged particle in
the SMT disorder can be divided into two types of mode: one
dominated by convective rolling within patch domains (i.e.,
intrapatch dynamics) and the other dominated by transfers
with slow patch movements (i.e., interpatch dynamics).

Figure 9 shows corresponding dispersion relations. The
friction γ

(�)
k is 1 order larger than the bare friction γ

(0)
k near k� ,

but converges at large wave numbers. A characteristic feature
is a dip appearing near k̂ � 1 in γ

(0)
k but not in γ

(�)
k . The bare

friction γ
(0)
k and the static friction γ

(�)
k caused by TFs are

explicitly related to the average rate in entropy production
Ṡk [29]. Over a macroscopic time scale, it is analytically
represented as

Ṡk = kB
(
γ

(0)
k + γ

(�)
k

) = kB/τ
(U)
k , (20)

where kB is the Boltzmann constant. The dip might reflect a
law of minimum entropy production rate in electroconvection.

The time scales, τ
(U)
k , τ

(�)
k , and γ̃kτ

(�)
k , are compared in

Fig. 10 for several ε values. The correlation time τ
(U)
k is much

longer than τ
(�)
k at large length scales, where the relaxation

dynamics is approximately represented by a simple exponen-
tial. The ratio τ

(U)
k /τ

(�)
k approaches unity with increasing k̂,

signifying that the memory effect persists for relatively long
times at short length scales. Meanwhile, γ̃kτ

(�)
k approaches τ

(�)
k

at large k̂, implying that the duration of the early stage is shorter
at small length scales. Therefore, dual relaxation clearly
appears in SMT at intermediate length scales, where τ

(�)
k is

not too short compared with τ
(U)
k and the friction coefficient

due to TFs is much larger than the bare friction, i.e., γ̃k � 1.
Mori and Okamura have proposed the affinity hypothesis

between the correlation and memory functions [3], in which
the correlation and memory functions have the same form of
decay with different magnitudes and characteristic time scales.
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0.00

  
 2
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 (μ
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FIG. 8. ε dependence of k� at which τ
(�)
k has a local maximum.

The gray dashed line marks the line fit, k2
� = c0 + c1ε, with c0 =

0.0045 and c1 = 0.052. The exponent of the power law is suggested
from the SMT patch structure: ξ ∼ ε−1/2.
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FIG. 9. (Color online) Dispersion relations for several ε values:
ε = 0.050 (purple), 0.20 (green), and 0.40 (red). The top panel gives
the bare-friction coefficient γ

(0)
k , and the bottom panel gives the

friction γ
(�)
k caused by TFs.

The main prediction from the hypothesis is that, when τ
(U)
k is

almost the same as τ
(�)
k , decay of the correlation features a

long-time tail with exponent −3/2 over all spatial dimensions.
Those time scales for SMT are almost the same for k̂ � 3.0,
as represented in Fig. 10. Our modal correlation functions in
the long-time region however have a large margin of error; we
cannot evaluate whether such long-time tails exist or not.

IV. CONCLUDING REMARKS

We experimentally observed the modal autocorrelation
function Ûk(t) of pattern dynamics in SMT. The modal
relaxation dynamics featured a dual relaxation (Fig. 3); the
correlation is well described by the time-reversible function at
the early stage and by a simple exponential relaxation at the
late stage. The corresponding time scales τ

(a)
k and τ

(e)
k obey

dynamic scaling laws for the intrapatch scales (Fig. 4).
With an expectation that the patch structure generates

memory effects due to the nonthermal fluctuations, we
employed the projection-operator formalism in which the
memory function naturally arises as the autocorrelation func-
tion of the nonthermal fluctuations. Indeed, we have verified
the expectation; the peak wave number k� (Fig. 8) of the time
scale τ

(�)
k (Fig. 7) suggests that the dual relaxation is caused

by intrapatch dynamics.
Solving the evolution equation [Eq. (7)] derived in

the projection-operator formalism, we revealed two well-
separated contributions for the nonthermal fluctuations in
Fig. 5: rapidly varying Markovian fluctuations and non-
Markov TFs. The former relates to the bare friction γ

(0)
k and the

latter to the memory function �k(t) [Eq. (9)]. SMT dynamics
was shown analytically to separate into three stages (Table I):
the bare-friction stage, τ � γ̃kτ

(�)
k , where the relaxation is
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FIG. 10. Plot of the characteristic times τ
(U)
k (dashed line), τ

(�)
k

(dark solid line), and γ̃kτ
(�)
k (light solid line) for ε = 0.050 (top), 0.10

(middle), and 0.40 (bottom), respectively.

linear decay; the early stage, γ̃kτ
(�)
k � τ � τ

(�)
k , where the

relaxation is time-reversible algebraic decay [Eq. (4)]; and the
late stage, τ (�)

k � τ , where the relaxation is simple exponential
decay [Eq. (5)]. Further, by the variables defined in the theory
(i.e., γ

(0)
k , γ

(�)
k , and τ

(�)
k ), we have analytically specified time

scales obtained in experiments: τ
(a)
k [Eq. (17)], τ

(e)
k [Eq. (15)],

and τ
(U)
k [Eq. (19)].

Comparison between the characteristic time scales (Fig. 10)
clarified the nature of the dual structure in SMT. It clearly
appears at intermediate length scales where the characteristic
time τ

(U)
k of the modal relaxation is not too short compared with

τ
(�)
k of the memory function due to TFs. Also, the friction coef-

ficient γ (�)
k due to TFs is much larger than the bare friction γ

(0)
k .

The physical origin of the Markovian nonthermal fluc-
tuations is still an open question. The dip near k̂ � 1 in
Fig. 9 suggests that the Markov contribution contains spatial
features relating to electroconvection. That is, the bare friction
consists of not only thermal fluctuations but also rapid variation
in nonthermal ones. Note that the Markovian nonthermal
fluctuations seem not to affect the SMT pattern dynamics, but
act as a trigger for the onset of SMT. If nonthermal Markov
fluctuations played a role in pattern dynamics, the modal
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correlation would break time-reversal symmetry even at the
early stage; nevertheless, early-stage relaxation is invariant
under time reversal [Eq. (4)].

Besides SMT, several types of spatiotemporal chaos appear
in the electroconvection of the liquid crystal systems. For
example, instead of the homeotropic anchoring, one can apply
the memory-function procedure to the planner anchoring as
the boundary condition in which the rotational symmetry is
not alive in the x-y plane. Our approach proposed in this
paper can pave the way to understand them universally from
the viewpoint of the nonthermal fluctuations relating to the
pattern. This will be discussed elsewhere.
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APPENDIX: PROJECTION-OPERATOR FORMALISM

Physically, a macroscopic system can be divided into slowly
varying behavior described by a set of macroscopic variables
{Ai} and rapidly varying terms [32,33]. The projection-
operator formalism mathematically allows us to separate these
two dynamics.

Using the linear projection operator, Mori mathematically
derived a generalized linear Langevin equation containing a
memory function [34]. The memory function is represented
as a temporal correlation of the fluctuations ri(t), where
〈ri(t + τ )Aj (t)〉 = 0. The generalized linear Langevin equa-
tion can be employed for not only equilibrium systems but
also nonequilibrium systems. However, in the linear projection
scheme, the fluctuation term ri(t) is orthogonal only to the
linear functions of {Ai} and can consist of not only the
microscopic degrees of freedom but also fluctuations from
nonlinear terms of {Ai}. Such nonthermal fluctuations are
possibly relevant in nonequilibrium systems [35,36].

Zwanzig [37,38] formulated the generalized nonlinear
Langevin equation by the nonlinear projection operator as

Ȧi(t) = vi(t) + Ji(t) + R
(0)
i (t), (A1)

where vi(t) denotes the streaming term including nonlinear
reversible terms and Ji(t), an irreversible term. The fluctuation
term R

(0)
i (t) satisfies〈

R
(0)
i (t + τ )F(A(t))

〉 = 0

for the arbitrary function F(A) of a set of macroscopic
variables, {Ai}. The nonlinearity of {Ai} is included in vi(t)
and Ji(t), and one can extract the linear part of {Ai} from
vi(t) and Ji(t) using the linear projection-operator method.
Mori and Fujisaka derived the evolution equation for
the correlation function Uij (τ ) := 〈Ai(t + τ )A∗

j (t)〉 as
[29,39]

∂Uij (τ )

∂τ
=

∑
l

iωilUlj (τ ) −
∑

l

∫ τ

0
dτ ′�′

il(τ − τ ′)Ulj (τ ′),

(A2)

where ωij denotes the mechanical coefficient and �′
il(τ )

the memory function. Note that Eq. (A2), which relates
the memory �′(τ ) to the nonthermal fluctuations, is of the
same form as the evolution equation derived in the linear
projection-operator formalism; therefore, from a physical
point of view, the obtained memory functions should be
checked to see whether the memory effect originates from
nonthermal fluctuations or not. If the characteristic time scale
for the correlation of R

(0)
i (t) is extremely short, then R

(0)
i (t)

satisfies 〈
R

(0)
i (t + τ )R(0)

j (t)
〉 � 2γ

(0)
ij δ(τ ), (A3)

where γ
(0)
ij denotes the bare-friction coefficient. In addition,

if the fluctuations extracted from the nonlinear terms do
not correlate with R

(0)
i (t), the memory function due to the

nonthermal fluctuations can be divided into two different
terms,

�′
ij (τ ) = 2γ

(0)
ij δ(τ ) + �ij (τ ), (A4)

where �ij (τ ) is regarded as the temporal correla-
tion of the non-Markov contribution of the nonthermal
fluctuations.
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