
PHYSICAL REVIEW E 88, 042147 (2013)

Duality of diffusion dynamics in particle motion in soft-mode turbulence
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Nonthermal Brownian motion is investigated experimentally by injecting a particle into soft-mode turbulence
(SMT), in the electroconvection of a nematic liquid crystal. It is clarified that the particle motion can be classified
into two phases: fast motion, where particles move with the local convective flow, and slow motion, where they
are carried by global slow pattern dynamics. We propose a simplified model to clarify the mechanism of the
short-time and asymptotic behavior of diffusion. In our model, the correlation time is estimated as a function of
a control parameter ε. The scaling of the SMT pattern correlation time, τd ∼ ε−1, is estimated from the particle
dynamics, which is consistent with a previous report observed from the Eulerian viewpoint. The origin of the
non-Gaussian distribution of the displacement in the short-time regime is also discussed and an analytical curve
is introduced that quantitatively agrees with the experimental data. Our results clearly illustrate the characteristics
of diffusive motion in SMT, which are considerably different from the conventional Brownian motion.
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I. INTRODUCTION

The random motion driven by nonthermal fluctuations or
chaotic flows [1–6] has been investigated in the context of
nonlinear physics and statistical mechanics far from equi-
librium. Among these phenomena, motion dynamics driven
by soft-mode turbulence (SMT) in the electroconvection of a
nematic liquid crystal is interesting because of the existence of
hierarchical structures such as locally aligned convective rolls
and a globally disordered structure [7,8]. Previous studies dis-
cussed the statistical-mechanical properties of the Brownian-
like motion in SMT, such as anomalous behavior in the short
time regime [4], the non-Gaussian distribution of velocity [5],
and the application of the fluctuation theorem (FT) [6]. In these
articles, although the asymptotic behavior of the finite-time
diffusion coefficient was qualitatively associated with the local
structure of SMT, the quantitative relation is still ambiguous.

In addition, the motion of an injected particle should pro-
vide a Lagrangian picture of SMT dynamics, which is expected
to contain new information different from the SMT pattern
dynamics itself. Supposing V (r,t) to be the flux vector field
of SMT, the observation from the Eulerian viewpoint provides
information about the pattern dynamics, (∂/∂t)V (r,t), while
the local flux velocity V (r,t) itself is obtained by observing a
particle that moves with the background flux. Thus, the particle
motion should provide additional information that is not avail-
able from the Eulerian viewpoint, for example, the rotation
speed of local convective rolls. Furthermore, as mentioned
above, the particle motion is basically independent of relatively
slow pattern dynamics, (∂/∂t)V (r,t); nevertheless, it may also
contain some information about the pattern dynamics, because
the motion of a particle with finite mass and finite size cannot
be completely coherent with the local flow [9]. The particle is
subjected to the pressure gradient of the SMT flow and may
sometimes be trapped at black-lines [10] or domain boundaries
of rolls [8]. Therefore, it can move with the pattern dynamics.
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In this article, we introduce a new method of distinguishing
the motion transported by the local flux from one carried by
the pattern dynamics. Diffusive behaviors for both types are
discussed using theoretical models, and typical time scales are
estimated as a function of the SMT control parameter, ε.

II. EXPERIMENTAL SETUP

SMT is observed in the homeotropic alignment system of a
nematic liquid crystal [8]. A nematic director aligned parallel
to the z axis (the axis perpendicular to the electrode) tilts above
the Fréedericksz point of the applied voltage, and the x-y
projection of the director becomes a Nambu-Goldstone mode.
Beyond the convective threshold voltage Vc, the long-range
mode is disordered owing to the nonlinear coupling between
the Nambu-Goldstone mode and the electroconvective mode,
and SMT appears. Thus, the electroconvective mode is
supercritical at the convection threshold in SMT [7].

To trace the motion of a particle in SMT, we injected small
particles into a standard cell in homeotropic alignment (Fig. 1).
The diameter and density of the particles (Micropearl) were
d = 6.48 ± 0.17 μm and ρ = 1.22 × 103 kg/m3, respectively.
Circular transparent electrodes of diameter 13.0 mm were used
and the thickness of the cell was 97 ± 3 μm.

The frequency of the applied voltage was set to be smaller
than the Lifshitz frequency to perform the experiment in the
oblique roll regime [11], since the fluctuations of the SMT are
isotropic and sufficiently strong to drive the particles in this
regime [12].

Images containing particles were sampled using a digital
microscope (VHX-900, Keyence corporation) at a time in-
terval of �t = 3 s. This time interval is sufficiently small
compared with the typical correlation time of the particle
motion. Using the normalized voltage ε = (V/Vc)2 − 1 as
a control parameter, we observed the Brownian motion of
particles at ε = 0.05, 0.075, 0.125, 0.150, and 0.6. The
particle trajectory was traced for up to 600 s for each
independent sample and statistical properties were measured
by averaging at least 30 samples for each ε.
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FIG. 1. (Color online) Particles in soft-mode turbulence. A solid
curve shows the trajectory of each particle.

III. RESULTS

From the time series of the particle position R(t) =
[x(t),y(t)], we measured the time-dependent diffusion
coefficient,

D(τ ) = 〈|R(t + τ ) − R(t)|2〉
2τ

, (1)

where 〈· · ·〉 denotes the sample and temporal average. As
shown in Fig. 2, D(τ ) sharply increases from 0, associated
with ballistic motion, and then moderately increases until it
reaches a constant value, i.e., that for normal diffusion, for
each ε. To clarify the mechanism of this anomalous behavior,
we carefully observed the particle trajectory and found that
the particle motion can be classified into two phases: a phase
with fast motion (named mode F) and a phase with slow
motion (named mode S). We classified time series data {Ri ≡
R(ti)}, (ti+1 − ti = �t) into two phases as follows: defining
the speed at t = ti to be vi ≡ |Ri+1 − Ri |/�t , the ith data
point is assumed to be in mode F if the average speed between
ti−2 � t � ti+2 is larger than the overall average speed and
in mode S otherwise. The typical trajectories of both phases
shown in Fig. 3 clearly illustrate that the characteristics of
motion in both phases are markedly different. While oscillatory
motion with a characteristic length is dominant in mode F,
particles gradually change their direction of motion in mode
S. Because switching between the two modes rarely occurs, we
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FIG. 2. (Color online) Time-dependent diffusion coefficient D(τ )
for each value of ε.

FIG. 3. (Color online) Plots with (red) squares show the trajecto-
ries of particle in mode F and solid (blue) curves show the trajectories
of particles in mode S.

measured the time-dependent diffusion coefficients for modes
F and S separately.

Mode S seems to appear when a particle fails to be
transported by the convection and is carried by slow pattern
dynamics. Its diffusion coefficient Ds(τ ) monotonically in-
creases with time as shown in Fig. 4. Thus, we simply assume
the velocity autocorrelation in mode S to be

〈v(t) · v(t + τ )〉 = 〈
v2

s

〉
e−τ/τd , (2)

with a time constant of τd and the mean square velocity in
mode S of 〈v2

s 〉. Then, the diffusion coefficient is described as

Ds(τ ) = D0
s [1 − (τd/τ )(1 − e−τ/τd )], (3)

with the asymptotic value of the diffusion coefficient D0
s (≡

〈v2
s 〉τd ). As shown in Fig. 4, experimental data are well fitted by

Eq. (3) with the fitting parameters D0
s and τd . The correlation

time τd decreases with increasing ε and is approximately
scaled as τd = cε−1 with a constant c (see Fig. 5). This scaling
is similar to that of the SMT pattern correlation time [7,13],
and the value c = 3.0 is of the same order as c = 2.1, obtained
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FIG. 4. (Color online) Time-dependent diffusion coefficient D(τ )
for mode S. The points show experimental results and the solid curves
are fitted using Eq. (3). The inset shows the diffusion coefficient for
model F and fitting curves obtained using Eq. (4).
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FIG. 5. (Color online) Correlation time for mode S, τd , and the
cycle of the convective roll, 2π/�, estimated from the particle motion
in mode F plotted against ε.

from pattern observation [13]. This fact suggests that during
such a time scale, τd , the local structure of the SMT pattern
exhibits regular motion (patch rotation, etc.), and thus a particle
in mode S drifts without changing its direction of motion.

FIG. 6. (Color online) Schematic drawing of particle motion in
SMT.

The oscillatory profile of the diffusion coefficient of
mode F, shown in the inset of Fig. 4, suggests that this mode is
associated with the motion carried by local convection. Such
behavior for a relatively short time range can be approximated
as the motion in one-dimensionally aligned convective rolls
(see Fig. 6). We propose a model for mode F, where a particle
is basically carried by a convective roll with diameter a and
angular frequency � but has opportunities to hop to the next
roll at the contacting edge with probability α. Under this
assumption, the diffusion coefficient is written as

8πτ

a2
Df (τ )

=
{

π (1 − cos �τ ) + α(4�τ + 2�τ cos �τ − 6 sin �τ ) (0 < τ � π/�)

π + (2α − 1) [2α(π − �τ ) + π ] cos �τ + 8α(2α − 1) sin �τ + 8α2(�τ − π ) + 4α�τ (π/� < τ � 2π/�)
. (4)

(see Appendix A). Although a deterministic model already
exists for a similar system, the oscillating convection array
[2,9], a stochastic model is used here for the hopping because
the fluctuation of SMT is more chaotic. As shown in the inset
of Fig. 4, the diffusion coefficient of mode F for each ε is well
fitted using Eq. (4). The values of the fitting parameters a, �,
and α are summarized in Table I. The estimated value of a is
relatively small compared with the actual value (70–80 μm).
This may be because the particles sometimes rotate in the inner
region of the rolls. On the other hand, the estimated value of �

should be more precise since this value sensitively depends on
the sharp peak of the diffusion coefficient curve at t = π/�.
The rotation frequency approximately depends on ε as � ∼√

ε, as shown in Fig. 5. The diffusion coefficient Df almost
converge to a constant value after t = 2π/� according to this
model and the asymptotic value is Df → a2α(�/2π )/(1 − α)
(see Appendix A). This value is more than three times larger

TABLE I. Fitting coefficients for modes F and S.

ε 2π/� [s] α a [μm] τd [s] D0
s [μm2s−1]

0.050 54.6 0.29 43.9 60.6 8.84
0.075 48.7 0.37 43.0 49.8 10.1
0.125 48.3 0.30 46.3 13.2 6.28
0.150 34.5 0.18 48.2 28.4 11.4
0.600 21.7 0.30 41.1 5.54 17.8

than D0
s . Therefore, the sharp increase in the total diffusion

coefficient D(τ ) at the initial stage is mainly due to the
oscillatory motion in mode F, and the moderately increasing
behavior in D(τ ) in the later stage reflects motion in mode S.

Next, we observed the distribution of the particle dis-
placement l(τ ) = |R(τ ) − R(0)|. In Fig. 7, the distribution
p(l,τ ), observed at ε = 0.05, is shown after normalization
by the standard deviation σ (τ ) at each time interval τ , i.e.,
σ (τ )p(̃l,τ ) is plotted against l̃ ≡ l/σ (τ ). As can be clearly
seen, the distribution in the short-time interval has a stretched
non-Gaussian tail that gradually converges to a Gaussian curve
as the time interval increases.

As mentioned above, the motion in mode F should be
dominant in the displacement distribution since its deviation
is much larger than that in mode S. The local structure of
a convective roll may induce such a stretched tail. Under
the Markovian approximation for the hopping event, the
probability of the number of hops in the time interval t is
described by the Poisson distribution Pq(n,t) ≡ e−qt (qt)n/n!
with a time constant q−1. Under this simplification, the
normalized distribution is written as

σ (τ )p(̃l,τ )

=
⎧⎨⎩

1
2π

exp(−̃l2/2) (̃l � √
qτ )√√

qτ/(2πl̃)e−qτ [e
√

qτ/(2̃l)]
√

qτ l̃ (tail)
(5)
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FIG. 7. (Color online) Normalized distribution of particle dis-
placement at ε = 0.05. The non-Gaussian tail gradually converges
to the Gaussian distribution (dashed curve). Other curves are drawn
using the tail distribution in Eq. (5).

(see Appendix B). The variable q here is not a fitting parameter
but is analytically associated with the parameters in Table I
as q = α(�/π )/(1 − α), because the diffusion coefficient of
D = qa2/2 under the assumption here should coincide with
the asymptotic value of that in the model in Appendix A, Df →
a2α(�/2π )/(1 − α). As shown in Fig. 7, the tail distribution
using the theoretical curves in Eq. (5) closely reproduces the
experimental results without any free parameter.

IV. SUMMARY AND DISCUSSIONS

Features of the Brownian motion in SMT were observed
in detail. It was found that the motion of the particle can
be classified into two types. The first type (named mode F)
mainly involves motion rotating with the local convective roll
and sometimes hopping to the neighboring rolls. The hopping
rate α and angular speed of the convection � were estimated
using our model. The other type (named mode S) is motion
moving with the slowly changing pattern dynamics of SMT.
The correlation time of the velocity was estimated and its
scaling, τd ∼ ε−1, was obtained, which is consistent with
the scaling of the pattern correlation time obtained from the
Eulerian viewpoint. In Ref. [4], it was pointed out that the
velocity distribution of a particle in SMT has a non-Gaussian
form. Such a distribution may be observed as the result
of superposition of these two modes. We also investigated
the distribution of the particle displacement. It was clarified
that the non-Gaussian tail in the short-time regime can be
associated with the typical local structure (roll diameter) and
the distribution of the hopping interval.

In preceding articles, we discussed how to describe the
motion of a particle in SMT using a generalized version of
the Langevin equation [4,6]. Thermal Brownian motion is
accurately described by the Langevin equation,

m
d

dt
v(t) = −γ v(t) + ξ (t) + F, (6)

with the friction constant γ , thermal noise ξ , and external force
F. The velocity correlation time is associated with the friction

constant as

τv ≡
∫ ∞

0 〈v(0) · v(t)〉dt

〈v(0)2〉 = m/γ. (7)

On the other hand, the Brownian motion of a particle in
turbulent flux can be described as [9]

m
d

dt
v(t) = −γ {v(t) − V [r(t),t]} + F. (8)

In the case for a sufficiently large γ , the particle velocity is
approximately

v(t) 	 V [r(t),t]; (9)

thus, the macroscopic effective friction coefficient �, defined
here to be

m/� ≡
∫ ∞

0 〈V [r(0),0] · V [r(t),t]〉dt

〈V (r(0),0)2〉 (10)

is independent of the microscopic friction coefficient, γ , and is
determined by the background flux. For example, the velocity
correlation time for a particle in mode F is approximately the
time required for the particle to lose its initial direction of
motion, which is estimated as

m/� 	
∞∑

n=1

(nπ/�)αn(1 − α) = (π/�)
α

1 − α
. (11)

Since the mean square velocity v2
0 is associated with the speed

of the convective flow as

v0 = a�/2, (12)

the diffusion constant is estimated to be

Df 	 mv2
0

/
� 	 a2�

α

1 − α
. (13)

In the case with a constant external force, the average speed
under the external force is, using Eq. (8) and assuming that
〈V 〉 = 0,

〈v〉 = F/γ. (14)

In the preceding article [6], the Brownian motion in SMT
under an external force (the gravity, F = mg, with gravity
constant g) was observed and the effective temperature TE

was measured assuming the Einstein relation

kBTE = γD. (15)

The estimated value of the effective temperature using the
diffusion coefficient and γ = mg/〈v〉 was TE ∼ 106 K, which
is extremely large compared with the actual kinetic energy
m〈v2〉/kB . This large discrepancy is caused by the difference
between the microscopic friction constant γ and the effective
friction constant �. In a system with macroscopic turbulent
flow, the average velocity as the response to an external force
is determined by γ , while the amplitude of the deviation from
the average velocity (diffusion) is determined by �. This fact
clearly illustrates the difference between motion driven by the
thermal fluctuation in a system in equilibrium and that driven
by the macroscopic flow in a system far from equilibrium.
Although Eqs. (6) and (8) have similar form, the characteristic
of the term γ V is greatly different from that of noise term ξ . In
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contrast to the Brownian motion in equilibrium system where
the fluctuation-dissipation relation

〈ξ (t)ξ (t ′)〉 = 2m〈v2〉γ δ(t − t ′) (16)

is satisfied, there is no relation between γ and V in nonequi-
librium systems, where turbulent flow is sustained by a steady
energy supply.

In Ref. [6], the effective temperature was also estimated
using FT [14]. Since we observed the displacement distribution
for a large time interval is Gaussian, which would not
change under a relatively small external force, i.e., p(x,τ ) ∼
exp[−(x − Fτ/γ )2/(4Dτ )], the distribution of power, w ≡
Fx/τ , can be described as

p(w) ∼ exp

[−(w − 〈w〉)2

4F 2D/τ

]
, (17)

with 〈w〉 = F 2/γ . Thus, it is natural that the ef-
fective temperature estimated from FT, (kBTFT )−1 ≡
ln[p(w)/p(−w)]/(wτ ) = (γD)−1 was almost equivalent to
that estimated from the Einstein relation, even in SMT.

One of the novel findings in this article is that as well
as the local structure being obtained by observations in
mode F, features of the pattern dynamics of SMT pattern
dynamics are obtained via mode S. The timescale for which a
particle remains in mode S should be controlled by changing
the particle mass and/or diameter. Further details of SMT
dynamics can be revealed by such treatment. The Brownian

motion of a particle under a large external force, where the
average drifting velocity is comparable with the fluctuating
velocity and the diffusive motion is disturbed, will also be an
interesting issue for further investigation.
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APPENDIX A: DIFFUSION IN FLUCTUATING
CONVECTION ARRAY

In a one-dimensional array of convective rolls, where the
center position of the j th roll is at x = ja, a particle initially
in the j = 0 roll with initial angle θ (0 � θ < π ) is assumed
to rotate with the convective flow of each roll with angular
frequency � and has an opportunity to hop to a neighboring
roll at every t = (θ + nπ )/�, (n = 1,2,3, . . .). If the particle
is in the j th roll at time t , the position x can be written as
x(t) = ja + (a/2) cos(θ − �t + jπ ), regardless of how many
times it undergoes hopping. In the time range �t < θ , the
particle is deterministically in the initial roll (j = 0), and in
the time range θ � �t < π + θ , it is in the j = 1 roll with
probability α or in the j = 0 roll with probability 1 − α. Thus,
the expected value of the second-order moment of x averaged
over the initial angle θ in the time range 0 � �t < π is

4π

a2
〈|x(t) − x(0)|2〉 =

∫ π

�t

[cos(θ − �t) − cos θ ]2dθ + (1 − α)
∫ �t

0
[cos(θ − �t) − cos θ ]2dθ

+α

∫ �t

0
[2 − cos(θ − �t) − cos θ ]2dθ

=
∫ π

0
[cos(θ − �t) − cos θ ]2dθ + 4α

∫ �t

0
[cos θ cos(θ − �t) − cos θ − cos(θ − �t) + 1]dθ

= π (1 − cos �t) + α(4�t + 2�t cos �t − 6 sin �t). (A1)

In the same way, in the time range π + θ � �t < 2π + θ , the particle is in the j = 2 roll with probability α2, in j = 1
with α(1 − α), in j = −1 with probability α(1 − α), and in j = 0 with probability (1 − α)2. Thus, the expected value of the
second-order moment of x in the time range π � �t < 2π is

4π

a2
〈|x(t) − x(0)|2〉 =

∫ π

�t−π

{(1 − α)[cos θ − cos(θ − �t)]2 + α[cos θ + cos(θ − �t) − 2]2}dθ

+
∫ �t−π

0
{(1 − α)2[cos θ − cos(θ − �t)]2 + α(1 − α)[cos θ + cos(θ − �t) − 2]2

+α(1 − α)[cos θ + cos(θ − �t) + 2]2 + α2[cos θ − cos(θ − �t) − 4]2}dθ

= π + (2α − 1)[2α(π − �t) + π ] cos �t + 8α(2α − 1) sin �t + 8α2(�t − π ) + 4α�t. (A2)

To calculate the second-order moment at an arbitrary time,
a discretized probability distribution pn,j , which denotes the
probability that the particle is in the j th roll in the time
range (n − 1)π + θ � �t < nπ + θ , is introduced. Following
the above discussion, the recurrence formula of pn,j is

described as

pn+1,i =
{

αpn,j−1 + (1 − α)pn,j [(n + j ) mod 2 = 0]

αpn,j+1 + (1 − α)pn,j [(n + j ) mod 2 = 1]
.

(A3)
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Using pn,j , the second-order moment of x at t = nπ/� is
written as

4π

a2
〈|x(nπ/�) − x(0)|2〉

=
∫ π

0
dθ

∑
j

[2j + (−1)n+j cos θ − cos θ ]2pj,n

= 4
∫ π

0
dθ

[〈j 2〉n − 2 cos θ〈j 1〉(1)
n + cos2 θ〈j 0〉(1)

n

]
= 4π〈j 2〉n + 2π〈j 0〉(1)

n , (A4)

where

〈jk〉(b)
n ≡

∑
i

ikpn,iδ(n+i) mod 2,b (b = 0,1),

(A5)〈jk〉n ≡ 〈jk〉(0)
n + 〈jk〉(1)

n .

The kth-order moment of j , 〈jk〉, is recursively calculated
from Eq. (A3). The recurrence formula for the zeroth order,

〈j 0〉(1)
n = α〈j 0〉(1)

n−1 + (1 − α)〈j 0〉(0)
n−1, (A6)

and vice versa for (b), leads to

〈j 0〉n = 1, and 〈j 0〉−n = −(2α − 1)n, (A7)

with 〈jk〉−n ≡ 〈jk〉(1)
n − 〈jk〉(0)

n . Similarly,

〈j 1〉−n = (2α − 1)〈j 1〉−n−1 + α〈j 0〉n−1

= α

2(1 − α)
[1 − (2α − 1)n], (A8)

and for the second order,

〈j 2〉n = 〈j 2〉n−1 + 2α〈j 1〉−n−1 + α〈j 0〉n−1

= −α2

2(1 − α)2
[1 − (2α − 1)n] + α

1 − α
n. (A9)

Substituting these equations into Eq. (A4),

4π

a2
〈|x(t) − x(0)|2〉 = π (1 − 2α − α2)

(1 − α)2
[1 − (2α − 1)�t/π ]

+ 4πα

1 − α
(�t/π ). (A10)

The value of this equation matches those of Eqs. (A1) and
(A2) at t = 0, π/�, and 2π/�. The asymptotic value of the
diffusion coefficient for this model is

lim
t→∞

〈|x(t) − x(0)|2〉
2t

= a2�α

2π (1 − α)
. (A11)

APPENDIX B: RANDOM WALK BASED
ON POISSON PROCESS

Strictly speaking, the time a hopping event occurs and the
time the next hopping event occurs are weakly correlated
according to the model in Appendix A. However, a particle
should gradually lose its initial phase due to the fluctuating
dynamics of the flow, and at a larger time compared with the
rotation period of rolls, Markovian approximation would be
suitable for the hopping event. When it is assumed that the
probability of the number of hops between convection rolls
within the time interval t follows the Poisson process, Pq(n,t),

the probability that a particle initially in the zeroth roll is in
the j th roll at time t is

pj (t) =
∞∑

k=0

Pq(j + 2k,t) j+2kCk

2j+2k

= e−qt (qt/2)j
∞∑

k=0

(qt/2)2k

(j + k)!k!
. (B1)

This distribution pj (t) satisfies the recurrence equation

pj+1(t) − pj−1(t)

2
= −(j/qt)pj (t). (B2)

Comparing with the expansion of the Gaussian distribution

exp[−(x + �x)2/(2t)]

= exp[−x2/(2t)][1 − (x/t)�x + 2−1(x/t)2(�x)2 + · · ·],
(B3)

the distribution for small j (|j | � qt) can be approximated as

pj (t) 	 1√
2πqt

e−j 2/(2qt). (B4)

On the other hand, for large j [(qt)2 � j ], the terms in the
summation in Eq. (B1), sk ≡ Pq(j,t)j+2kCk/2j+2k satisfy

sk+1

sk

= (qt/2)2

(j + k + 1)(k + 1)
� 1. (B5)

Thus, taking only the leading term s0, a Poisson-like tail
appears in the displacement distribution as

pj (t) 	 2−jPq(j,t)

	 e−qt

√
2πj

(
eqt

2j

)j

. (B6)

The second-order moment of j is

〈j 2〉 = 2
∞∑

j=0

j 2
∞∑

k=0

Pq(j + 2k,t) j+2kCk

2j+2k

= 2
∞∑

k=0

∞∑
j=2k

(j − 2k)2Pq(j,t) jCk

2j

=
∞∑

j=0

j∑
k=0

(j − 2k)2Pq(j,t) jCk

2j

=
∞∑

j=0

jPq(j,t) = qt. (B7)

The roll index j can be associated with the continuous
displacement as l = aj , and the standard deviation of l under
this model is σ (τ ) = a

√
qτ , thus, the normalized distribution,

Eq. (5), is described by Eqs. (B4) and (B6).
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