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For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-
convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the
remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant,
the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with
the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the
volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is
thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a
schematic model.
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I. INTRODUCTION

Short-range attractive colloids are prominent in studies of
the glass transition. In colloidal systems of a high volume
fraction, since each particle is stuck in the “cage” made of
the neighboring particles, the structural rearrangement rarely
occurs. The glass driven by the exclusive volume effect is
classified as repulsive glass. On the other hand, there is a
different glass-forming mechanism in systems of attractive
interaction. At a low temperature, each particle is trapped
in potential well and sticks together to form clusters. The
glass originated from the cluster formation is called attractive
glass. The attraction length in atomic or molecular systems
is comparable to the particle size; nevertheless, in colloidal
systems, the short-range attraction can be materialized [1–11].
For systems of the attraction range smaller than about one
tenth of the particle diameter, mode-coupling theory (MCT)
predicted melting of a glass by cooling and the direct transition
between repulsive and attractive glasses [12–15]. Eckert et al.
and Pham et al. then observed the glass-liquid-glass reentrant
[4,5], and Chen et al. confirmed the glass-glass transition in
experiments [7]. Numerical simulations for attractive colloids
have also supported such rich phenomena [16–22]. We here
study the glass transition of short-range attractive colloids
to validate a theory recently proposed by Tokuyama: time-
convolutionless mode-coupling theory (TMCT) [23,24].

A glassy state is ideally characterized by the presence of an
arrested part in correlation functions [25], and MCT describes
the kinetic glass transition as a nonlinear bifurcation, so-called
nonergodic transition [26–29]. However, while some exten-
sions and modifications have been done [30–33], MCT has
a few shortcomings that remain to be solved. A fundamental
problem is the case that the transition point predicted by MCT
is far from the calorimetric glass transition points observed by
experiments and by simulations. In order to overcome such a
difficulty, TMCT has been proposed as an alternative theory
to MCT [23].
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The way of extracting macroscopic (i.e., slow) dynamics
differs between MCT and TMCT. The starting equation of
both MCT and TMCT is the Heisenberg equation of motion,
Ȧ(t) = iLA(t), where A(t) denotes a vector of macroscopic
variables and iL is the Liouville operator. To derive a coarse-
grained equation of the density fluctuation, MCT employs
the Mori projection operator [34]. This formalism derives an
equation that contains a memory function as a form of the
time-convolution integral. On the other hand, TMCT employs
the Tokuyama-Mori projection operator [35,36], where the
derived equation contains the memory function as a form of
the time-convolutionless integral. The hypothesis concerning
the memory function of TMCT is the same as that of MCT, and
consequently the memory functions of MCT and TMCT have
the same form. TMCT thus can be studied by the theoretical
framework of MCT [23,24,37].

TMCT predicts some different features from MCT. For
example, the initial value of the non-Gaussian parameter is a
nonzero value in MCT, but 0 in TMCT [23]. In addition, TMCT
improves the quantitative features. For the monodisperse
hard-sphere system, Kimura and Tokuyama have solved the
TMCT equation by using the static structure factor under the
Percus-Yevick approximation (PYA) [38]. The solution has
predicted the critical volume fraction φc = 0.582, while the
MCT solution leads to φc = 0.516 [26]. In this paper, we thus
show not only how TMCT qualitatively recovers the MCT
predictions for short-range attractive colloids but also how the
critical values are quantitatively improved.

The present paper is organized as follows. Section II
explains the model we study and the numerical schemes.
Section III presents and discusses the kinetic phase diagram
obtained numerically. To support validity of the results,
in Sec. IV, a schematic model is investigated analytically.
Section V summarizes this paper. The details of the analysis
for the schematic model are mentioned in the Appendix.

II. METHOD

The square-well system (SWS) has been studied as a simple
model of short-range attractive colloids [12–15,39–44]. The
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FIG. 1. Comparison between the MCT (open circle) and TMCT (filled circle) results of the transition lines of SWS based on PYA: ε = 0.03
(red), 0.04 (blue), 0.05 (green), 0.06 (purple), and 0.09 (black), from right to left. The MCT results are identical to those in Ref. [14].

pairwise potential of SWS is described as U (r) = ∞(0 < r <

d), − u0(d < r < d + �),0(d + � < r), where d denotes the
hard-core diameter, u0 the depth of the potential well, and � the
width of the attraction. The equilibrium states are specified by
three control parameters: the width parameter ε = �/(d + �)
[45], the volume fraction of the hard spheres φ = πρd3/6,
and the dimensionless temperature θ = kBT/u0, where ρ

denotes the number density. The molecular dynamics (MD)
simulations of SWS have been done for the one-component
system [17] and binary systems [18,46].

Similarly to the MCT equation for the correlation function
of the mode ρq(t) of the density fluctuation, the TMCT
equation is solved numerically by using the static structure
factor Sq = 〈|ρq(t)|2〉 as the initial condition, where the
brackets denote an average over an equilibrium ensemble.
The nonergodic transition is intuitively quantified by the
Debye-Waller factor fq , which is the long-time limit of
the intermediate scattering function Fq(t) = 〈ρq(t)ρ∗

q (0)〉,
i.e., fq = limt→∞ Fq(t)/Sq . For both MCT and TMCT, the
memory function Fq at the long-time limit is described as

Fq = 1

32π2ρ

∫ ∞

0
dk

∫ ′
dp

kp

q5
SqSkSpv(q,k,p)2fkfp, (1)

where the prime at the p integral means that the integration
range is restricted to |q − k| � p � q + k, and v(q,k,p) =
(q2 + k2 − p2)ρck + (q2 − k2 + p2)ρcp with the direct cor-
relation function cq = (Sq − 1)/(ρSq). The functional Fq of
fq is called the mode-coupling polynomial, which is a central
concept of the MCT framework.

The Debye-Waller factor obeys the fixed-point equation
fq = T (fq) with

T (fq) =
{ 1

1+1/Fq
[MCT],

exp
(− 1

Fq

)
[TMCT].

(2)

An ordinary scheme was employed to obtain fq numerically
[47]. The static structure factor of SWS was numerically
obtained under PYA [14]. The wave number integrals were
discretized to M = 500 points spaced equally, and the cutoff
wave number was set as qcut = 200/d. The cutoff was
equalized to the previous study for MCT [14,29]. Note that
we carried out the numerical calculations with qcut = 400/d to
guarantee the independence of the transition points from qcut.

III. RESULTS AND DISCUSSION

A. Glass-liquid-glass reentrant

The numerical solution of TMCT describes the liquid-
glass-liquid reentrant at small ε. Figure 1 shows the lines
connecting the transition points of each ε. Each transition
point was characterized by the maximum eigenvalue E, where
the bifurcation occurs at which E = 1 [48]. The liquid-
glass transition of TMCT appears at higher volume fractions
compared to the MCT results. The volume fraction of the high-
temperature limit slightly exceeds the value φc = 0.582 for
the monodisperse hard spheres [38] because of the attractive
interaction [14]. The shapes of line are qualitatively similar to
those of MCT; they are swollen rightward around θ � 1 for
small ε. This indicates the glass-liquid-glass reentry with a
decrease of temperature.

B. Glass-glass transition

At ε = 0.03 and 0.04 in Fig. 1, the TMCT lines correspond-
ing to the attractive glass transition penetrate into the glassy
state. To clarify whether the bifurcation in the glassy state is the
glass-glass transition or not, we next focus on the peak value
of fq . Figure 2(a) illustrates the contour map of the peak value
at ε = 0.03. The peak of fq appears around q = 7.4/d, which
corresponds to the wave number where Sq has a peak. The
directions of the contour lines are distinguished with respect
to each area of the repulsive and attractive glasses. Although
the peak value continuously changes almost everywhere, it
discontinuously changes on the bifurcation line in the glassy
state. Figure 2(b) shows the value of fq for three wave numbers
at ε = 0.03. The volume fraction was selected at φ = 0.61247
as the bifurcation occurs at θc = 1.05. The behavior of fq near
the glass-glass transition point is the same as that of MCT [14].
In θ < θc, |fq − fc,q | asymptotically holds the square root
variation of |θ − θc|, where fc,q = limθ↗θc fq . This means that
the attractive glass appears and disappears as a fold bifurcation.

C. Higher-order singularities

In this subsection, we confirm that the glass-glass transition
line of TMCT ends as well as that of MCT. Figure 2(c) shows
the φ dependence of the maximum eigenvalue E for several θ at
ε = 0.03. It clearly shows that there is a marginal temperature
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FIG. 2. Numerical results at ε = 0.03 obtained in the TMCT analysis. (a) The contour map of the Debye-Waller factor fq of q = 7.4/d .
The white region corresponds to the ergodic state, fq = 0. In the repulsive-glass region, fq gradually increases with φ. The black bold lines
indicate the transition line, and the gray ones are the contour line per 0.001. Although the contours near the transition line change in a staircase
pattern, they have no physical meanings; the pseudoform is wrongly generated from a software for numerical analysis. (b) The temperature
dependence of fq at φ = 0.61247. The circle (red) indicates result for q = 7.4/d , the square (green) for q = 10.6/d , and the triangle (blue) for
q = 3.4/d . (c) The φ dependence of the maximum eigenvalue E: θ = 1.110 (blue circle), 1.125 (red triangle), 1.130 (black plus mark), and
1.150 (green cross mark). In panels (b) and (c), the results of the attractive glass are represented by filled symbols, and those of the repulsive
glass are shown by open symbols.

θ∗ such that the value of E reaches the unity in θ < θ∗ and
it does not in θ > θ∗ with controlling φ. At θ = θ∗, the
eigenvalues of both the repulsive and attractive glasses reach
unity. It is thus concluded that the glass-glass transition line of
ε = 0.03 terminates at (φ∗,θ∗) � (0.6173,1.125). This point
has been characterized as A3 singularity (equivalently, cusp
bifurcation), which is a higher-order singularity [12–15,42–
44]. In this context, the nonergodic transition is classified as
the A2 singularity. Chen et al. have experimentally proved the
existence of the A3 singularity [7]. Note that the A3 singularity
of ε = 0.04 is at (φ∗,θ∗) � (0.6039,1.073). With an increase
of ε, the glass-glass transition line disappears at a certain
point. This parameter set is called A4 singularity (equivalently,
swallow-tail bifurcation) point [14,42–44]. The TMCT value
of ε at the A4 singularity point is around 0.05. As the MCT
value is around 0.04 [14], TMCT extends the ε range within
which the glass-glass transition occurs.

D. Quantitative comparison of transition points

We finally compare TMCT with MCT in a quantitative
manner. Figure 3 shows the kinetic phase diagram at ε = 0.03,
in which the TMCT critical values for the one-component SWS
are compared with those of MCT and the MD results for the
binary SWS (A:B = 50:50) [18]. The transition line of the MD
simulation was determined by the contour of the normalized
diffusivity D̃ = 5 × 10−6 of the A particle, where D̃ = D/D0,
D0 = dA

√
kBT/m, D denotes the long-time self-diffusion co-

efficient, and dA the diameter of the A particle. The long-time
self-diffusion coefficient is an appropriate physical value for a
unified comparison between different systems [49]. The value
5 × 10−6 was chosen for the iso-diffusivity line in the high T

limit to approach φ � 0.58 [18]. The iso-diffusive line is much
closer to the kinetic glass transition line of TMCT without
any scaling. Although the critical temperatures of TMCT
overestimate the MD results, we do not judge whether TMCT
fails to predict the critical temperature or not. Approximation

methods (e.g., PYA) for Sq affect the temperature dependence.
A characteristic T of SWS based on the mean-spherical
approximation (MSA) is about five times smaller than that
based on PYA, while characteristic φ and ε are comparable
between PYA and MSA [14]. In fact, the transition line of
the TMCT analysis for one-component SWS based on MSA
underestimates the MD result. In addition, the difference might
originate from the fact that the simulation was done for binary
SWS, while TMCT was applied for one-component SWS.

IV. SCHEMATIC MODEL

Our numerical results in SWS have shown that TMCT leads
to the glass-liquid-glass reentrant, the glass-glass transition,
and the higher-order singularities. However, in a schematic
model where MCT predicts both the liquid-glass and glass-
glass transition with the A3 singularity [50], Götze and

2

1

0

θ

0.620.600.580.560.540.52
φ

FIG. 3. The transition lines at ε = 0.03. The line with filled
circles (red) indicates the TMCT result, and the line with open circles
(red) the MCT result. The broken line with squares indicates the MD
result of the iso-diffusivity D̃ = 5 × 10−6 for A particle of the binary
SWS [18].
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FIG. 4. The bifurcation diagram on the v1–vn space of the
modified schematic model with w = 1/6. The blue lines correspond
to MCT, and the red ones to TMCT. The solid lines represent
the discontinuous bifurcation, and the open circles mark the A3

singularities. The dashed line represents the continuous bifurcation,
in which the Debye-Waller factor continuously changes across the
bifurcation line [50].

Schilling have shown that, although the liquid-glass transition
occurs in TMCT, the glass-glass transition does not [37]. In
this section, we analyze a modified version of the schematic
model to support validity of our numerical results.

The model analyzed by Götze and Schilling assumes a
mode-coupling polynomial of a single wave number (i.e.,
M = 1) as F = v1f + v3f

3, where f denotes the Debye-
Waller factor of M = 1 and positive coefficients v1 and v3

correspond to control parameters. We here consider the mod-
ified schematic model in which a mode-coupling polynomial
is defined by

F = v1f + vnf
1+ 1

w , (3)

where, in addition to positive coefficients v1 and vn, a positive
coefficient w in the power is another control parameter.

In the modified schematic model (3), TMCT predicts
the liquid-glass transition, the glass-glass transition, and the
higher-order singularities, where the details of the analysis is
summarized in the Appendix. The kinetic phase diagram of
the model with w = 1/6 (i.e., the power is 7 in the nonlinear
term) includes the A3 singularity as shown in Fig. 4. The
range of w where the A3 singularity emerges is limited to
w < w∗ with w∗ = (

√
2 − 1)/2 � 0.207, meaning that the

A4 singularity exists at w = w∗. In the MCT analysis to the
modified schematic model, the discontinuous bifurcation line
of w < 1 terminates, and that of w > 1 does not. It implies
that the A4 singularity occurs w∗ = 1 in the MCT analysis.
This difference of w∗ between MCT and TMCT is a probable
reason why higher-order singularities do not appear in the
TMCT analysis by Götze and Schilling.

The modified schematic model with MCT does not corre-
spond to the short-range attractive colloids because one of the
bifurcation lines predicted by MCT indicates the continuous
bifurcation. On the other hand, TMCT does not describe any
continuous bifurcations [37]. Thus, identifying (v1,vn,w) with
(φ,1/T ,ε), except for the glass-liquid-glass reentrant, the mod-
ified schematic model with TMCT qualitatively corresponds to

the short-range attraction colloids well. Nevertheless, it should
be noted that the model is just schematic; there is no knowing
whether a control parameter such as ε can shift the nonlinear
power. As the modified schematic model is a single-wave num-
ber model (M = 1), it can be interpreted as renormalization
from the whole rage of wave number alters the power (i.e., w)
of the nonlinear term. On the basis of this idea, Tokuyama has
described simulation results well by TMCT [51].

A similar form of the phase diagram shown in Fig. 4 has
been reported by Götze and Sperl [42]. They have studied
a two-wave-number model with three control parameters:
F1(x1,x2) = v1x

2
1 + v2x

2
2 and F2(x1,x2) = v3x1x2. In their

model, there is a marginal value v∗
3 such that the A3 singularity

exists in v3 > v∗
3 , and it does not in v3 < v∗

3 . At v3 = v∗
3 , the

discontinuous bifurcation lines collapse. Note that there are
no single-wave-number models in which the A4 singularity
predicted by MCT exists by collapsing the discontinuous
bifurcation lines.

V. SUMMARY

For SWS as a model of the attractive colloids, we
have presented numerical evidence for the existence of the
glass-liquid-glass reentrant, the glass-glass transition, and the
higher-order (i.e., A3 and A4) singularities in the TMCT
analysis. Compared with the results of MD simulation for
a binary colloidal system with short-range attraction, we have
clarified a quantitative improvement of the critical volume
fractions. As TMCT has the same form of the memory
function of MCT, our analysis enhances the utility of the MCT
framework for the study of glass transition. By contrast to the
success in the critical volume fraction, the difference of the
critical temperatures between theoretical calculations and MD
simulations should be addressed. The TMCT analysis by using
the static structure factor obtained from the MD simulation will
enable the detailed comparison of the critical temperature with
that of the simulation result.

We have analytically studied the modified schematic model
defined in Eq. (3) to demonstrate that TMCT predicts the
higher-order singularities within schematic models. Except for
the glass-liquid-glass reentrant, the modified schematic model
qualitatively describes the kinetic phase diagram of the short-
range attractive colloids well. Recalling that w is introduced
in the power of the nonlinear term, TMCT suggests that the
A3 singularity emerges in the nonlinear power more than 3 +
2
√

2 � 5.82, while MCT predicts it in the power more than 2.
This insensitivity for nonlinearity might cause the quantitative
improvement in TMCT.

Our results have given a counterexample to a concern that
TMCT could not describe the glass-glass transition nor the
higher-order singularities. To discuss this matter carefully, this
paper has concentrated on the phase diagram described from
TMCT. A next issue to consider is the dynamics. Although
the theoretical framework of TMCT has been constructed by
Tokuyama [23,24] and Götze and Schilling [37], dynamical
properties of realistic models such as the monodisperse hard-
sphere system has been less studied yet. For SWS, it is
interesting to study typical topics such as the scaling law with
regard to the exponent parameter, the logarithmic decay, and
stretching features of attractive and repulsive glasses.
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Very recently, Tokuyama has shown that the dynamic
features obtained in simulations are well described by TMCT
[51]. However, we should mention that further investigation is
necessary because those works were done approximately by
employing a phenomenological approach based on a simplified
MCT model [26]. In contrast, our approach can obtain numer-
ical solutions of the TMCT equation without any approxima-
tions. Such dynamic features promote better understanding of
the glass transition. This will be discussed elsewhere.
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APPENDIX

The Appendix presents details of analysis for the modified
schematic model (3).

For MCT and TMCT, the fixed-point equation f = T (f )
leads to

v1 + vnf
1
w = 1

f s
, (A1)

where s is defined as 1/F :

s =
{ f

1−f
[MCT],

1
ln(1/f ) [TMCT].

(A2)

Further, the stability matrix A on the bifurcation points must
be unity, that is,

vc
1 +

(
1 + 1

w

)
vc

n(f c)
1
w = 1

(f c)1+δMCT (sc)2
, (A3)

where the superscript c indicates their critical values and

δMCT =
{

1 [MCT],

0 [TMCT].
(A4)

Equations (A1) and (A3) reduce to the parametric representa-
tion of vc

1 and vc
n:

vc
1 = w

[(
1 + 1

w

)
G1 − G2

]
, (A5)

vc
n = w

(f c)
1
w

(G2 − G1), (A6)

with

G1 = 1

f csc
, G2 = 1

(f c)1+δMCT (sc)2
. (A7)

Figure 4 was drawn based on these equations. The intercepts
of the discontinuous bifurcation lines are derived as follows.
When vn = 0, the critical values are vc

1 = e in TMCT, and
vc

1 = 1 in MCT for w > 1. On the other hand, when v1 = 0,
Eqs. (A5) and (A6) lead to

vc
n =

{
1
w

(1 + w)1+ 1
w [MCT],

e
w

(1 + w) [TMCT].
(A8)

These equations indicate that, for an arbitrary w > 0, vc
n of

TMCT is larger than that of MCT. Note that, in TMCT, s at
v1 = 0 is represented by the Lambert W-function W (x) [51]:

s = − w

1 + w
W

(
−1 + w

vnw

)
. (A9)

Since the domain of W (x) is x � −1/e, the critical value (A8)
of TMCT is again obtained.

If the A3 singularity occurs, then the exponent parameter
λ is unity, where λ determines the critical exponent a and b

of so-called β process as λ = �2(1 + b)/�(1 + 2b) = �2(1 −
a)/�(1 − 2a). For the modified schematic model, λ of TMCT
is represented as

λ = sc

2

[
2 + 1

w
− sc

(
1 + 1

w

)]
. (A10)

In the case that w = 1/2, Götze and Schilling have shown that
the maximum of λ is 2/3. However, Eq. (A10) proposes that λ

of TMCT reaches to 1 when w � w∗ with w∗ = (
√

2 − 1)/2,
i.e., TMCT predicts the A3 and A4 singularities within the
schematic model.
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