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1. Introduction
Convection is an experimentally-obtained system of steady-state nonequilibrium physics. The Rayleigh–
Benard convection is a convection caused by heat transfer. Another example is electroconvection observed
in nematic liquid crystals, in which the control parameter is the ac voltage applied to system. The charac-
teristic length of the electroconvection is much shorter than that of the Rayleigh–Benard convection, and
consequently characteristic time scales of the electroconvection are accessible experimentally. Thus, elec-
trohydrodynamic convection is one of the most convenient phenomena to investigate pattern formation of
the nonequilibrium physics.

There are some types of layer alignment in nematic liquid crystal; one of them is planar alignment, where the
director aligns parallel to substrates (x-direction), and another is homeotropic alignment, where the director
aligns perpendicular to substrates (z-direction). The rubbing to x-direction on the substrates’ surface (x–y
plane) is treated to make planer systems, and intrinsically breaks the rotational symmetry. With increasing
magnitude V and fixed frequency f of the applied ac voltage, static convection patterns appear above a
threshold voltage [1, 2]. On the other hand, in the homeotropic systems, the rotational symmetry on x–y
plane is alive at a sufficiently low voltage. As the applied voltage increases, the Freédericksz transition
[3] occurs at a threshold voltage VF and breaks the rotational symmetry spontaneously, accompanied by
the Nambu–Goldstone mode at zero wave number [4-6]. With further increasing the voltage, a secondary
transition occurs at another threshold voltage Vc and the electroconvection occurs. Consequently, a spatially
and temporally complex dynamics is generated by nonlinear interaction between the Nambu–Goldstone
mode and the convection mode that corresponds to nonzero wave number [7-9]. This can be regarded as
experimentally-obtained spatiotemporal chaos, and was named soft-mode turbulence (SMT) because of the
softening of the state’s macroscopic fluctuations [7].

We investigated SMT dynamics by measuring temporal autocorrelation functions of turbulence-like pat-
tern. It had long been considered that the relaxation was described by the simple exponential. However,
we revealed that the relaxation deviates near the threshold of electroconvection [10]; it is well-fitted by the
compressed exponential, which describes the dynamics of jammed systems. It suggests a similarity between
dynamics of SMT and that of glass-forming liquids (GFL). The compressed exponential relaxation in GFL
arises from cooperatively rearranging; indeed, spatially and temporally fluctuating domains have been ex-
perimentally observed near the glass transition point. On the other hand, in SMT, there exist patch domains
where electroconvective rolls are parallel while the pattern is disordered as a whole. Thus, the domain of
SMT corresponds to the cooperatively rearranging region of GFL, and the coherency in the patch domains
leads to the non-exponential relaxation in SMT.

Our previous study has been focused on the total autocorrelation function including entire wave-number
information, while the wave-number dependence has been discussed in the context of GFL. The temporal
correlations of each wave number, i.e., modal autocorrelation functions, defined by

Ûk(t) = ⟨uk(t)u∗k(0)⟩P−1
k , (1)
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are more suitable for studying SMT dynamics, where uk(t) denotes the Fourier transform of the transmitted
light intensity and Pk the spatial power spectrum. In this international conference, we aim to present our
experimental results of the modal correlation function and discuss an interesting phenomenon found in
SMT.

2. Experimental setup

Figure 1: A typical snapshot of the SMT with
the white scale bar indicating 100 µm, where
the control parameters are ε = 0.1.

We study a two-dimensional pattern dynamics of SMT
observed in the homeotropic alignment of nematic liquid
crystals [7]. The space between two parallel glass plates
was filled with MBBA [N–(4–Methoxybenzilidene)–4–
buthylaniline]. The thickness between the plates is 27 µm.
The surfaces were laid by DMOAP (N , N–dimethyl–N–
octadecyl–3–aminopropyl-trimethoxysilyl chloride 50%)
to trigger the homeotropic alignment, and were coated with
indium tin oxide (ITO) which is a circular electrode with
the radius 1.3 cm. The dielectric constant parallel to the di-
rector was ϵ∥ = 6.25 and the electric conductivity parallel
to the director σ∥ = 1.17 × 10−7 Ω−1m−1. Note that the
dielectric constant anisotropy ϵa := ϵ∥ − ϵ⊥ is negative.

An ac voltage V (t) =
√
2V cos(2πft) was applied to the

sample. A normalized voltage ε = (V/Vc)
2 − 1 was em-

ployed as a control parameter, where Vc was 7.78±0.05 V.
Two types of SMT pattern arise; oblique rolls in f < fL
and normal rolls in f > fL, where fL denotes the Lifshitz
frequency [7, 8]. In this study, we fix f = 100 Hz that is less than fL. The temperature is controlled at
30.00 ± 0.05 ◦C. Before each data sampling, we waited for 10 min at Vw = 6.0 V and then for 10 min at
desired V , where VF < Vw < Vc < V .

The electroconvection pattern was observed by a microscope and was captured by a high-speed camera. In
the region of the control parameters we set, SMT was successfully observed. A typical two-dimensional
image is shown in Fig. 1, where the measurement area was 830× 830 µm2 (450× 450 pixels).

The power spectrum Pk obtained experimentally has a clear peak around kpeak ≃ 0.321 µm−1. Its wave-
length λpeak = 2π/kpeak is 19.6 µm corresponding to the fundamental period of electroconvectional rolls.
We employ kpeak as the reference value; namely, the wave number is normalized as k̂ := k/kpeak.

3. Theory

Using the nonlinear projection formalism [11, 12], one can derive the evolutional equation renormalizing
nonlinear fluctuations as

dUij(t)

dt
= iωilUlj(t)−

∫ t

0
dsΓ′

il(t− s)Ulj(s), (2)

where i =
√
−1, ωij denotes the mechanical coefficient, Uij(t) the temporal correlation function of the

gross variables Ai(t) and Aj(0), and Γ′
ij(t) denotes the memory function containing nonlinear fluctuations.



When the characteristic time scale of the microscopic fluctuations is much fast, Γ′
ij(t) can be separated as

Γ′
ij(t) = 2γ

(0)
ij δ(t) + Γij(t), (3)

where γ(0)ij denotes the bare friction coefficient and Γij(t) is represented by the correlation of the nonlinear
fluctuations.

We here presume {uk} as a complete set of the gross variables in SMT. The evolution equation of the
normalized modal time-correlation function is thus represented as

dÛk(t)

dt
= −

∫ t

0
dsΓ′

k(t− s)Ûk(s). (4)

Note that the mechanical coefficient vanishes analytically. If the assumption that the characteristic time is
fast for the microscopic fluctuations holds even in SMT, we obtain

dÛk(t)

dt
= −γ

(0)
k Ûk(t)−

∫ t

0
dsΓk(t− s)Ûk(s) (5)

with
Γ′
k(t) = 2γ

(0)
k δ(t) + Γk(t). (6)

We can numerically obtain the memory function Γk(t) from Eqn. (5) using the experimentally-obtained
Ûk(t).

4. Result and discussion
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Figure 2: Dual structure in a modal relaxation
Ûk(t) with k̂ = 1.0 and ε = 0.1. Open circle
indicates experimental result, gray solid line
the algebraic decay, and black dashed line the
simple exponential decay.

We have clarified that the memory effect due to nonlinear
fluctuations has a finite time scale, implying the memory
plays a important role for the pattern dynamics in SMT.
Consequently, the modal relaxations have dual structure
due to chaotic mixing [13]; the relaxation in the faster time
regime is dominated by the algebraic (i.e., time-reversible)
function

Ûk(t) =
1

1 +
(
t/τ

(a)
k

)2 , (7)

and that in the slower time regime is dominated by the sim-
ple exponential (i.e., time-irreversible) one

Ûk(t) ∝ exp
[
−t

/
τ
(e)
k

]
, (8)

where τ
(a)
k and τ

(e)
k denote the characteristic timescales for

faster and slower regimes, respectively. Figure 2 shows the
dual structure schematically for a specific parameter. Note
that for the other parameters we found the dual structure as
well. The dual structure has been theoretically predicted to
date; however, this study has observed it experimentally for
the first time.

In the oral presentation, we show our experimental results and discuss the dual structure of SMT in detail.
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